New insights into the interaction between seawater and CO2-activated calcium silicate composites

Farzana Mustari Nishat, Ishrat Baki Borno, Adhora Tahsin, Warda Ashraf
{"title":"New insights into the interaction between seawater and CO2-activated calcium silicate composites","authors":"Farzana Mustari Nishat, Ishrat Baki Borno, Adhora Tahsin, Warda Ashraf","doi":"10.1016/j.cemconcomp.2025.105929","DOIUrl":null,"url":null,"abstract":"This article presents the investigation findings on the combined effect of seawater and carbonation curing on two types of binders – blended binder containing blast furnace slag (BFS) and laboratory synthesized pure β-C<sub>2</sub>S. Samples were prepared using freshwater and seawater as mixing water. After casting, the samples were exposed to accelerated CO<sub>2</sub> curing for 7 days and then exposed to seawater for up to 56 days. The results revealed that the use of seawater as mixing water has substantially different effects on the performances of β-C<sub>2</sub>S compared to blended cement. Specifically, the use of seawater as the mixing water resulted in a threefold increase in the amount of carbonates formation in β-C<sub>2</sub>S paste compared to the samples prepared by mixing with fresh water. The seawater mixed and CO<sub>2</sub> cured β-C<sub>2</sub>S paste samples showed continuous increase in strength even after extended exposure to seawater and reached up to 75 MPa strength, which is nearly 100% increase compared to the samples prepared with freshwater mixing. However, such drastic benefits of using seawater were not observed in the case of blended binders. For pure β-C<sub>2</sub>S, the presence of Mg ions along with slightly higher pH resulted in the formation of vaterite and Mg-calcite contributing to superior performances. Additionally, after exposure to seawater, the silica gel phase captured Mg from seawater to form M-S-H. On the hand, the presence of Al in blended cement led to the formation of layered double hydroxides, including hydrotalcite and hydrocalumite, which limited the benefits of using seawater. Additionally, the presence of Al also resulted in the formation of ettringite formation when exposed to seawater. Because of these effects, a slight reduction in strength was observed in case of carbonation cured blended cement after their exposure to seawater.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the investigation findings on the combined effect of seawater and carbonation curing on two types of binders – blended binder containing blast furnace slag (BFS) and laboratory synthesized pure β-C2S. Samples were prepared using freshwater and seawater as mixing water. After casting, the samples were exposed to accelerated CO2 curing for 7 days and then exposed to seawater for up to 56 days. The results revealed that the use of seawater as mixing water has substantially different effects on the performances of β-C2S compared to blended cement. Specifically, the use of seawater as the mixing water resulted in a threefold increase in the amount of carbonates formation in β-C2S paste compared to the samples prepared by mixing with fresh water. The seawater mixed and CO2 cured β-C2S paste samples showed continuous increase in strength even after extended exposure to seawater and reached up to 75 MPa strength, which is nearly 100% increase compared to the samples prepared with freshwater mixing. However, such drastic benefits of using seawater were not observed in the case of blended binders. For pure β-C2S, the presence of Mg ions along with slightly higher pH resulted in the formation of vaterite and Mg-calcite contributing to superior performances. Additionally, after exposure to seawater, the silica gel phase captured Mg from seawater to form M-S-H. On the hand, the presence of Al in blended cement led to the formation of layered double hydroxides, including hydrotalcite and hydrocalumite, which limited the benefits of using seawater. Additionally, the presence of Al also resulted in the formation of ettringite formation when exposed to seawater. Because of these effects, a slight reduction in strength was observed in case of carbonation cured blended cement after their exposure to seawater.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信