Israel Greenfeld , Shenda Jiang , Lin Yang , H. Daniel Wagner
{"title":"Nonlinear elasticity degrades monolayer fracture toughness","authors":"Israel Greenfeld , Shenda Jiang , Lin Yang , H. Daniel Wagner","doi":"10.1016/j.actamat.2025.120727","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes, a novel class of monolayer transition metal carbides and nitrides, have gathered significant attention in materials science for their exceptional properties. This study focuses on investigating the influence of atomic defects on the fracture toughness of MXenes and similar monolayers. Comprehensive understanding and modeling of the fundamental physical mechanisms that govern MXene defect-mediated fracture is largely unexplored. Here, molecular dynamics simulations and theoretical fracture mechanics are employed to investigate the role of slit vacancy defects in the toughness of Ti<sub>2</sub>C MXene. The material is found to exhibit brittle fracture behavior, and compared to classic predictions, its strength is significantly degraded by short defects. Two physical mechanisms are proposed to model MXene fracture — the material nonlinear elasticity, and the quantization of the crack driving energy. Combining both effects, this model is in excellent agreement with the MXene simulated toughness and may find application in other materials exhibiting similar toughness degradation and nonlinear elasticity.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"286 ","pages":"Article 120727"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425000205","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes, a novel class of monolayer transition metal carbides and nitrides, have gathered significant attention in materials science for their exceptional properties. This study focuses on investigating the influence of atomic defects on the fracture toughness of MXenes and similar monolayers. Comprehensive understanding and modeling of the fundamental physical mechanisms that govern MXene defect-mediated fracture is largely unexplored. Here, molecular dynamics simulations and theoretical fracture mechanics are employed to investigate the role of slit vacancy defects in the toughness of Ti2C MXene. The material is found to exhibit brittle fracture behavior, and compared to classic predictions, its strength is significantly degraded by short defects. Two physical mechanisms are proposed to model MXene fracture — the material nonlinear elasticity, and the quantization of the crack driving energy. Combining both effects, this model is in excellent agreement with the MXene simulated toughness and may find application in other materials exhibiting similar toughness degradation and nonlinear elasticity.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.