Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Veronica Sui, Hilary Bertisch, Donald C. Goff, Alexey Samsonov, Mariana Lazar
{"title":"Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders","authors":"Yu Veronica Sui, Hilary Bertisch, Donald C. Goff, Alexey Samsonov, Mariana Lazar","doi":"10.1038/s41380-024-02883-0","DOIUrl":null,"url":null,"abstract":"<p>Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort. We utilized quantitative magnetization transfer (qMT) imaging combined with advanced diffusion imaging to estimate specific myelin-related biophysical properties in 51 young adult PSD patients compared with 38 age-matched healthy controls. The macromolecular proton fraction (MPF) obtained from qMT was used as a specific marker of myelin content. Additionally, MPF was employed along with diffusion metrics of axonal density (<i>v</i><sub><i>ic</i></sub>) and extra-cellular volume fraction to derive the g-ratio, a measure of relative myelin sheath thickness defined as the ratio of inner to outer axonal diameter. Compared to controls, we observed a widespread MPF reduction and localized g-ratio increase in patients, primarily those with a diagnosis of schizophrenia or depressive schizoaffective disorder. No between-group differences were noted in <i>v</i><sub><i>ic</i></sub>, suggesting similar axonal densities across groups. Correlation analysis revealed that lower MPF was significantly related to poorer working memory performance in PSD, while the HC group showed a positive association for working memory with both g-ratio and <i>v</i><sub><i>ic</i></sub>. The pattern of changes observed in our multimodal imaging markers suggests that PSD, depending on symptomatology, is characterized by specific alterations in white matter integrity and myelin-axonal geometry of major white matter tracts, which may impact working memory function. These findings provide a more detailed view of myelin-related white matter changes in early stages of PSD.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"779-780 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02883-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort. We utilized quantitative magnetization transfer (qMT) imaging combined with advanced diffusion imaging to estimate specific myelin-related biophysical properties in 51 young adult PSD patients compared with 38 age-matched healthy controls. The macromolecular proton fraction (MPF) obtained from qMT was used as a specific marker of myelin content. Additionally, MPF was employed along with diffusion metrics of axonal density (vic) and extra-cellular volume fraction to derive the g-ratio, a measure of relative myelin sheath thickness defined as the ratio of inner to outer axonal diameter. Compared to controls, we observed a widespread MPF reduction and localized g-ratio increase in patients, primarily those with a diagnosis of schizophrenia or depressive schizoaffective disorder. No between-group differences were noted in vic, suggesting similar axonal densities across groups. Correlation analysis revealed that lower MPF was significantly related to poorer working memory performance in PSD, while the HC group showed a positive association for working memory with both g-ratio and vic. The pattern of changes observed in our multimodal imaging markers suggests that PSD, depending on symptomatology, is characterized by specific alterations in white matter integrity and myelin-axonal geometry of major white matter tracts, which may impact working memory function. These findings provide a more detailed view of myelin-related white matter changes in early stages of PSD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信