MarsSeg: Mars Surface Semantic Segmentation With Multilevel Extractor and Connector

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junbo Li;Keyan Chen;Gengju Tian;Lu Li;Zhenwei Shi
{"title":"MarsSeg: Mars Surface Semantic Segmentation With Multilevel Extractor and Connector","authors":"Junbo Li;Keyan Chen;Gengju Tian;Lu Li;Zhenwei Shi","doi":"10.1109/TGRS.2025.3526630","DOIUrl":null,"url":null,"abstract":"The segmentation and interpretation of the Martian surface play a pivotal role in Mars exploration, providing essential data for the trajectory planning and obstacle avoidance of rovers. However, the complex topography, self-similar surface features, and the lack of extensive annotated data pose significant challenges to the high-precision semantic segmentation of the Martian surface. To address these challenges, we propose a novel encoder–decoder-based Mars segmentation network, termed MarsSeg. To facilitate a high-level semantic understanding across the multilevel feature maps, we introduce a feature enhancement module, which incorporates a multiscale feature pyramid (MFP) and strip attention pyramid pooling module (SAPPM). The MFP is specifically designed for shallow feature enhancement, thereby enabling the expression of local details and small objects. Conversely, the SAPPM is employed for deep feature enhancement, facilitating the extraction of high-level semantic category-related information. To effectively fuse features from different levels, we propose a feature fusion module, which contains Mars polarized self-attention (Mars-PSA) and pixel attention head (PA-Head). Mars-PSA enables the fusion of multilevel information while directing the model’s attention to salient features. The PA-Head focuses on detailed information at the pixel level. Experimental results derived from the Mars-Seg and AI4Mars datasets prove that the proposed MarsSeg outperforms other state-of-the-art methods in segmentation performance, validating the efficacy of each proposed component.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-12"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10830541/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The segmentation and interpretation of the Martian surface play a pivotal role in Mars exploration, providing essential data for the trajectory planning and obstacle avoidance of rovers. However, the complex topography, self-similar surface features, and the lack of extensive annotated data pose significant challenges to the high-precision semantic segmentation of the Martian surface. To address these challenges, we propose a novel encoder–decoder-based Mars segmentation network, termed MarsSeg. To facilitate a high-level semantic understanding across the multilevel feature maps, we introduce a feature enhancement module, which incorporates a multiscale feature pyramid (MFP) and strip attention pyramid pooling module (SAPPM). The MFP is specifically designed for shallow feature enhancement, thereby enabling the expression of local details and small objects. Conversely, the SAPPM is employed for deep feature enhancement, facilitating the extraction of high-level semantic category-related information. To effectively fuse features from different levels, we propose a feature fusion module, which contains Mars polarized self-attention (Mars-PSA) and pixel attention head (PA-Head). Mars-PSA enables the fusion of multilevel information while directing the model’s attention to salient features. The PA-Head focuses on detailed information at the pixel level. Experimental results derived from the Mars-Seg and AI4Mars datasets prove that the proposed MarsSeg outperforms other state-of-the-art methods in segmentation performance, validating the efficacy of each proposed component.
基于多级提取器和连接器的火星表面语义分割
火星表面的分割与解译在火星探测中起着至关重要的作用,为探测车的轨迹规划和避障提供了必要的数据。然而,复杂的地形、自相似的表面特征以及缺乏广泛的标注数据,给火星表面的高精度语义分割带来了重大挑战。为了解决这些挑战,我们提出了一种新的基于编码器-解码器的火星分割网络,称为MarsSeg。为了促进多层次特征映射的高层次语义理解,我们引入了一个特征增强模块,该模块结合了多尺度特征金字塔(MFP)和条带注意力金字塔池模块(SAPPM)。MFP是专门为浅层特征增强而设计的,从而可以表达局部细节和小物体。相反,SAPPM用于深度特征增强,便于提取高级语义类别相关信息。为了有效地融合不同层次的特征,我们提出了一种包含火星极化自注意(Mars- psa)和像素注意头(PA-Head)的特征融合模块。Mars-PSA能够融合多层信息,同时将模型的注意力引导到显著特征上。PA-Head专注于像素级的详细信息。来自Mars-Seg和AI4Mars数据集的实验结果证明,所提出的MarsSeg在分割性能上优于其他最先进的方法,验证了所提出的每个组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信