{"title":"Does Adding a Modality Really Make Positive Impacts in Incomplete Multi-Modal Brain Tumor Segmentation?","authors":"Yansheng Qiu;Kui Jiang;Hongdou Yao;Zheng Wang;Shin’ichi Satoh","doi":"10.1109/TMI.2025.3526818","DOIUrl":null,"url":null,"abstract":"Previous incomplete multi-modal brain tumor segmentation technologies, while effective in integrating diverse modalities, commonly deliver under-expected performance gains. The reason lies in that the new modality may cause confused predictions due to uncertain and inconsistent patterns and quality in some positions, where the direct fusion consequently raises the negative gain for the final decision. In this paper, considering the potentially negative impacts within a modality, we propose multi-modal Positive-Negative impact region Double Calibration pipeline, called PNDC, to mitigate misinformation transfer of modality fusion. Concretely, PNDC involves two elaborate pipelines, Reverse Audit and Forward Checksum. The former is to identify negative regions impacts of each modality. The latter calibrates whether the fusion prediction is reliable in these regions by integrating the positive impacts regions of each modality. Finally, the negative impacts region from each modality and miss-match reliable fusion predictions are utilized to enhance the learning of individual modalities and fusion process. It is noted that PNDC adopts the standard training strategy without specific architectural choices and does not introduce any learning parameters, and thus can be easily plugged into existing network training for incomplete multi-modal brain tumor segmentation. Extensive experiments confirm that our PNDC greatly alleviates the performance degradation of current state-of-the-art incomplete medical multi-modal methods, arising from overlooking the positive/negative impacts regions of the modality. The code is released at PNDC.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 5","pages":"2194-2205"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10830281/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previous incomplete multi-modal brain tumor segmentation technologies, while effective in integrating diverse modalities, commonly deliver under-expected performance gains. The reason lies in that the new modality may cause confused predictions due to uncertain and inconsistent patterns and quality in some positions, where the direct fusion consequently raises the negative gain for the final decision. In this paper, considering the potentially negative impacts within a modality, we propose multi-modal Positive-Negative impact region Double Calibration pipeline, called PNDC, to mitigate misinformation transfer of modality fusion. Concretely, PNDC involves two elaborate pipelines, Reverse Audit and Forward Checksum. The former is to identify negative regions impacts of each modality. The latter calibrates whether the fusion prediction is reliable in these regions by integrating the positive impacts regions of each modality. Finally, the negative impacts region from each modality and miss-match reliable fusion predictions are utilized to enhance the learning of individual modalities and fusion process. It is noted that PNDC adopts the standard training strategy without specific architectural choices and does not introduce any learning parameters, and thus can be easily plugged into existing network training for incomplete multi-modal brain tumor segmentation. Extensive experiments confirm that our PNDC greatly alleviates the performance degradation of current state-of-the-art incomplete medical multi-modal methods, arising from overlooking the positive/negative impacts regions of the modality. The code is released at PNDC.