Breaking the cosmological invariance of the dark-matter halo shape as a new probe of modified gravity

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Rémy Koskas, Jean-Michel Alimi
{"title":"Breaking the cosmological invariance of the dark-matter halo shape as a new probe of modified gravity","authors":"Rémy Koskas, Jean-Michel Alimi","doi":"10.1051/0004-6361/202451898","DOIUrl":null,"url":null,"abstract":"In a recent paper, we highlighted in <i>w<i/>CDM models derived from general relativity (GR) (with Dark Energy Universe numerical simulation data), a cosmological invariance of the distribution of dark-matter (DM) halo shapes when expressed in terms of the nonlinear fluctuations of the cosmic matter field. This paper shows that this invariance persists when tested on numerical simulations performed with a different <i>N<i/>-body solver, and that it is also robust to adding massive neutrinos to the cold DM component. Furthermore, this discovery raises crucial questions about the validity of this invariance in MG models. Thus, we examined whether it remains robust in the case of Hu & Sawicki model using DUSTGRAIN-<i>pathfinder<i/> numerical simulations. By comparing the results of advanced numerical simulations in these different theoretical frameworks, we found significant deviations from the invariance observed in the framework of <i>w<i/>CDM models of GR. These deviations suggest that the gravitation’s nature significantly influences the DM halos’ shape. We then interpreted this departure from the GR models’ invariance as a manifestation of the scalar-field screening effect corresponding to such <i>f<i/>(<i>R<i/>)-type theories. This one modifies the sphericization process of DM halos during their formation, precisely because the critical mass at which this scalar field becomes non-negligible is the mass at which the deviation appears. To this extent, the departure from cosmological invariance in DM halos’ shape is a cosmological probe of the nature of gravity, and the mass scale at which it appears can be used to estimate the <i>f<i/><sub><i>R<i/>0<sub/> parameter of such theories.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"24 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451898","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent paper, we highlighted in wCDM models derived from general relativity (GR) (with Dark Energy Universe numerical simulation data), a cosmological invariance of the distribution of dark-matter (DM) halo shapes when expressed in terms of the nonlinear fluctuations of the cosmic matter field. This paper shows that this invariance persists when tested on numerical simulations performed with a different N-body solver, and that it is also robust to adding massive neutrinos to the cold DM component. Furthermore, this discovery raises crucial questions about the validity of this invariance in MG models. Thus, we examined whether it remains robust in the case of Hu & Sawicki model using DUSTGRAIN-pathfinder numerical simulations. By comparing the results of advanced numerical simulations in these different theoretical frameworks, we found significant deviations from the invariance observed in the framework of wCDM models of GR. These deviations suggest that the gravitation’s nature significantly influences the DM halos’ shape. We then interpreted this departure from the GR models’ invariance as a manifestation of the scalar-field screening effect corresponding to such f(R)-type theories. This one modifies the sphericization process of DM halos during their formation, precisely because the critical mass at which this scalar field becomes non-negligible is the mass at which the deviation appears. To this extent, the departure from cosmological invariance in DM halos’ shape is a cosmological probe of the nature of gravity, and the mass scale at which it appears can be used to estimate the fR0 parameter of such theories.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信