Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut–liver axis

IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Xiang Zhang, Harry Cheuk-Hay Lau, Suki Ha, Chuanfa Liu, Cong Liang, Hye Won Lee, Queena Wing-Yin Ng, Yi Zhao, Fenfen Ji, Yunfei Zhou, Yasi Pan, Yang Song, Yating Zhang, Jennie Ching Yin Lo, Alvin Ho Kwan Cheung, Jianfeng Wu, Xiaoxing Li, Hongzhi Xu, Chi Chun Wong, Vincent Wai-Sun Wong, Jun Yu
{"title":"Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut–liver axis","authors":"Xiang Zhang, Harry Cheuk-Hay Lau, Suki Ha, Chuanfa Liu, Cong Liang, Hye Won Lee, Queena Wing-Yin Ng, Yi Zhao, Fenfen Ji, Yunfei Zhou, Yasi Pan, Yang Song, Yating Zhang, Jennie Ching Yin Lo, Alvin Ho Kwan Cheung, Jianfeng Wu, Xiaoxing Li, Hongzhi Xu, Chi Chun Wong, Vincent Wai-Sun Wong, Jun Yu","doi":"10.1038/s42255-024-01177-7","DOIUrl":null,"url":null,"abstract":"<p>Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). <i>TM6SF2</i> genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host–microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of <i>Tm6sf2</i> (<i>Tm6sf2</i><sup>ΔIEC</sup>) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from <i>Tm6sf2</i><sup>ΔIEC</sup> mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in <i>Tm6sf2</i><sup>ΔIEC</sup> mice co-housed with wild-type mice. Mechanistically, <i>Tm6sf2</i>-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both <i>Tm6sf2</i><sup>ΔIEC</sup> and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"35 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01177-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host–microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of Tm6sf2 (Tm6sf2ΔIEC) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from Tm6sf2ΔIEC mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in Tm6sf2ΔIEC mice co-housed with wild-type mice. Mechanistically, Tm6sf2-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both Tm6sf2ΔIEC and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature metabolism
Nature metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
27.50
自引率
2.40%
发文量
170
期刊介绍: Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信