Context-Aware Multi-view Stereo Network for Efficient Edge-Preserving Depth Estimation

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wanjuan Su, Wenbing Tao
{"title":"Context-Aware Multi-view Stereo Network for Efficient Edge-Preserving Depth Estimation","authors":"Wanjuan Su, Wenbing Tao","doi":"10.1007/s11263-024-02337-8","DOIUrl":null,"url":null,"abstract":"<p>Learning-based multi-view stereo methods have achieved great progress in recent years by employing the coarse-to-fine depth estimation framework. However, existing methods still encounter difficulties in recovering depth in featureless areas, object boundaries, and thin structures which mainly due to the poor distinguishability of matching clues in low-textured regions, the inherently smooth properties of 3D convolution neural networks used for cost volume regularization, and information loss of the coarsest scale features. To address these issues, we propose a Context-Aware multi-view stereo Network (CANet) that leverages contextual cues in images to achieve efficient edge-preserving depth estimation. The structural self-similarity information in the reference view is exploited by the introduced self-similarity attended cost aggregation module to perform long-range dependencies modeling in the cost volume, which can boost the matchability of featureless regions. The context information in the reference view is subsequently utilized to progressively refine multi-scale depth estimation through the proposed hierarchical edge-preserving residual learning module, resulting in delicate depth estimation at edges. To enrich features at the coarsest scale by making it focus more on delicate areas, a focal selection module is presented which can enhance the recovery of initial depth with finer details such as thin structure. By integrating the strategies above into the well-designed lightweight cascade framework, CANet achieves superior performance and efficiency trade-offs. Extensive experiments show that the proposed method achieves state-of-the-art performance with fast inference speed and low memory usage. Notably, CANet ranks first on challenging Tanks and Temples advanced dataset and ETH3D high-res benchmark among all published learning-based methods.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"39 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02337-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based multi-view stereo methods have achieved great progress in recent years by employing the coarse-to-fine depth estimation framework. However, existing methods still encounter difficulties in recovering depth in featureless areas, object boundaries, and thin structures which mainly due to the poor distinguishability of matching clues in low-textured regions, the inherently smooth properties of 3D convolution neural networks used for cost volume regularization, and information loss of the coarsest scale features. To address these issues, we propose a Context-Aware multi-view stereo Network (CANet) that leverages contextual cues in images to achieve efficient edge-preserving depth estimation. The structural self-similarity information in the reference view is exploited by the introduced self-similarity attended cost aggregation module to perform long-range dependencies modeling in the cost volume, which can boost the matchability of featureless regions. The context information in the reference view is subsequently utilized to progressively refine multi-scale depth estimation through the proposed hierarchical edge-preserving residual learning module, resulting in delicate depth estimation at edges. To enrich features at the coarsest scale by making it focus more on delicate areas, a focal selection module is presented which can enhance the recovery of initial depth with finer details such as thin structure. By integrating the strategies above into the well-designed lightweight cascade framework, CANet achieves superior performance and efficiency trade-offs. Extensive experiments show that the proposed method achieves state-of-the-art performance with fast inference speed and low memory usage. Notably, CANet ranks first on challenging Tanks and Temples advanced dataset and ETH3D high-res benchmark among all published learning-based methods.

基于上下文感知的多视点立体网络高效保边深度估计
近年来,基于学习的多视点立体方法采用了粗到精深度估计框架,取得了很大的进展。然而,现有方法在无特征区域、目标边界和薄结构的深度恢复方面仍然存在困难,这主要是由于低纹理区域匹配线索的可分辨性差、用于成本体积正则化的三维卷积神经网络固有的光滑性以及最粗尺度特征的信息丢失。为了解决这些问题,我们提出了一种上下文感知的多视图立体网络(CANet),它利用图像中的上下文线索来实现有效的边缘保持深度估计。引入自相似参与成本聚合模块,利用参考视图中的结构自相似信息在成本域中进行远程依赖关系建模,提高无特征区域的匹配性。然后利用参考视图中的上下文信息,通过提出的分层残差学习模块逐步细化多尺度深度估计,从而得到精细的边缘深度估计。为了在最粗糙的尺度上丰富特征,使其更多地聚焦于微妙的区域,提出了一个焦点选择模块,可以通过薄结构等更精细的细节增强初始深度的恢复。通过将上述策略集成到设计良好的轻量级级联框架中,CANet实现了卓越的性能和效率权衡。大量实验表明,该方法具有推理速度快、内存占用少等优点。值得注意的是,CANet在所有已发布的基于学习的方法中,在具有挑战性的坦克和庙宇高级数据集和ETH3D高分辨率基准上排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信