{"title":"Enhancing Valley Splitting and Anomalous Valley Hall Effect in V-Doped Janus MoSeTe monolayer","authors":"Shulai Lei, jiayao wang, Rongli Zhao, Jinbo Sun, Shujuan Li, Xinyue Xiong, Yin Wang, Ke Xu","doi":"10.1039/d4cp04412f","DOIUrl":null,"url":null,"abstract":"Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of the V 3d orbitals. Additionally, we observe the anomalous valley Hall effect (AVHE) in V-doped 2-H phase Janus MoSeTe monolayer, showcasing its potential for valleytronic applications. Importantly, we found that the valley polarization can be effectively modulated by applying external strain, with notable changes at different strain levels. These findings suggest that monolayer V-doped 2H-phase Janus MoSeTe is an ideal material to design of tunable, controllable valleytronic devices, offering new opportunities for the next generation of vally-based technologies.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04412f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of the V 3d orbitals. Additionally, we observe the anomalous valley Hall effect (AVHE) in V-doped 2-H phase Janus MoSeTe monolayer, showcasing its potential for valleytronic applications. Importantly, we found that the valley polarization can be effectively modulated by applying external strain, with notable changes at different strain levels. These findings suggest that monolayer V-doped 2H-phase Janus MoSeTe is an ideal material to design of tunable, controllable valleytronic devices, offering new opportunities for the next generation of vally-based technologies.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.