Miguel G. Cruz, Chad M. Hoffman, Paulo M. Fernandes
{"title":"Global Synthesis of Quantification of Fire Behaviour Characteristics in Forests and Shrublands: Recent Progress","authors":"Miguel G. Cruz, Chad M. Hoffman, Paulo M. Fernandes","doi":"10.1007/s40725-024-00241-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>The behaviour of wildland fires, namely their free spreading nature, destructive energy fluxes and hazardous environment, make it a phenomenon difficult to study. Field experimental studies and occasional wildfire observations underpin our understanding of fire behaviour. We aim to present a global synthesis of field-based studies in forest and shrublands fuel types published since 2003 with a focus on the most commonly measured fire behaviour attributes, namely rate of fire spread, ignition and spread sustainability, flame characteristics, fuel consumption and spotting behaviour.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>We present a synthesis of measured fire behaviour data collected in field experiments and wildfire environments encompassing the last two decades. We discuss the effect of a lack of standardised experimental methodologies in field studies, which has inhibited our quantitative understanding of the physical drivers of fire behaviour. The application of new fire environment and behaviour measuring sensors and methods offer opportunities for more comprehensive descriptions of fire spread characteristics, particularly when applied to wildfire events, to better capture scale dependent phenomena that do not occur at smaller experimental scales.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>Fire behaviour data collected in field experiments and wildfires form the foundation of our quantitative understanding of fire dynamics. These data are used in the development and evaluation of predictive models with operational and scientific applications. We provide a broad synthesis of existing field-based studies in forest and shrubland ecosystems and discuss their limitations and needs for future research.</p>","PeriodicalId":48653,"journal":{"name":"Current Forestry Reports","volume":"7 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Forestry Reports","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s40725-024-00241-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of Review
The behaviour of wildland fires, namely their free spreading nature, destructive energy fluxes and hazardous environment, make it a phenomenon difficult to study. Field experimental studies and occasional wildfire observations underpin our understanding of fire behaviour. We aim to present a global synthesis of field-based studies in forest and shrublands fuel types published since 2003 with a focus on the most commonly measured fire behaviour attributes, namely rate of fire spread, ignition and spread sustainability, flame characteristics, fuel consumption and spotting behaviour.
Recent Findings
We present a synthesis of measured fire behaviour data collected in field experiments and wildfire environments encompassing the last two decades. We discuss the effect of a lack of standardised experimental methodologies in field studies, which has inhibited our quantitative understanding of the physical drivers of fire behaviour. The application of new fire environment and behaviour measuring sensors and methods offer opportunities for more comprehensive descriptions of fire spread characteristics, particularly when applied to wildfire events, to better capture scale dependent phenomena that do not occur at smaller experimental scales.
Summary
Fire behaviour data collected in field experiments and wildfires form the foundation of our quantitative understanding of fire dynamics. These data are used in the development and evaluation of predictive models with operational and scientific applications. We provide a broad synthesis of existing field-based studies in forest and shrubland ecosystems and discuss their limitations and needs for future research.
Current Forestry ReportsAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
15.90
自引率
2.10%
发文量
22
期刊介绍:
Current Forestry Reports features in-depth review articles written by global experts on significant advancements in forestry. Its goal is to provide clear, insightful, and balanced contributions that highlight and summarize important topics for forestry researchers and managers.
To achieve this, the journal appoints international authorities as Section Editors in various key subject areas like physiological processes, tree genetics, forest management, remote sensing, and wood structure and function. These Section Editors select topics for which leading experts contribute comprehensive review articles that focus on new developments and recently published papers of great importance. Moreover, an international Editorial Board evaluates the yearly table of contents, suggests articles of special interest to their specific country or region, and ensures that the topics are up-to-date and include emerging research.