Robert J. Ortiz, Rajarshi Mondal, James K. McCusker, David E. Herbert
{"title":"Leveraging Intramolecular π-Stacking to Access an Exceptionally Long-Lived 3MC Excited State in an Fe(II) Carbene Complex","authors":"Robert J. Ortiz, Rajarshi Mondal, James K. McCusker, David E. Herbert","doi":"10.1021/jacs.4c12650","DOIUrl":null,"url":null,"abstract":"The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (<sup>3</sup>MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived <sup>3</sup>MC excited state for a remarkable 4.1 ± 0.3 ns in fluid solution at ambient temperature. Analysis of variable-temperature time-resolved absorption data using theoretical models ranging from Arrhenius to semiclassical Marcus theory, combined with computational modeling and X-ray crystallography, reveal a Jahn–Teller stabilized excited state with a high activation barrier for ground-state recovery. The net result is a chromophore with a <sup>3</sup>MC excited-state lifetime that is orders of magnitude longer than anything yet observed for an Fe(II) complex.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12650","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (3MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived 3MC excited state for a remarkable 4.1 ± 0.3 ns in fluid solution at ambient temperature. Analysis of variable-temperature time-resolved absorption data using theoretical models ranging from Arrhenius to semiclassical Marcus theory, combined with computational modeling and X-ray crystallography, reveal a Jahn–Teller stabilized excited state with a high activation barrier for ground-state recovery. The net result is a chromophore with a 3MC excited-state lifetime that is orders of magnitude longer than anything yet observed for an Fe(II) complex.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.