Triphenylphosphine Oxide-Derived Anolyte for Application in Nonaqueous Redox Flow Battery

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emily R. Mahoney, Maxime Boudjelel, Henry Shavel, Matthew D. Krzyaniak, Michael R. Wasielewski, Christian A. Malapit
{"title":"Triphenylphosphine Oxide-Derived Anolyte for Application in Nonaqueous Redox Flow Battery","authors":"Emily R. Mahoney, Maxime Boudjelel, Henry Shavel, Matthew D. Krzyaniak, Michael R. Wasielewski, Christian A. Malapit","doi":"10.1021/jacs.4c07750","DOIUrl":null,"url":null,"abstract":"Recent advances in redox flow batteries have made them a viable option for grid-scale energy storage, however they exhibit low energy density. One way to boost energy density is by increasing the cell potential using a nonaqueous system. Molecular engineering has proven to be an effective strategy to develop redox-active compounds with extreme potentials but these are usually challenged by resource sustainability of the newly developed redox materials. Here, we investigate the utility of phosphine oxides as anolytes with extremely negative potentials. Specifically, we found that cyclic triphenylphosphine oxide (CPO), has a highly negative potential (−2.4 V vs Fc/Fc<sup>+</sup>). Importantly, CPO is synthesized from triphenylphosphine oxide, a common industrial chemical waste with no commercial value. Structural and electrochemical characterization of the reduced radical anion showed that enhanced stability is due to cyclization or extended pi-conjugation. Importantly, mechanistic investigation into the decomposition of CPO under various solvents and electrochemical conditions allowed us to utilize an acetonitrile/DMF binary solvent system to enable a long-lived anolyte which exhibited no fade over 350 cycles. In summary, this work led to the development of a waste-derived cyclic phosphine oxide that exhibits excellent cycling stability making it an ideal anolyte toward the development of energy-dense RFBs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"37 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c07750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in redox flow batteries have made them a viable option for grid-scale energy storage, however they exhibit low energy density. One way to boost energy density is by increasing the cell potential using a nonaqueous system. Molecular engineering has proven to be an effective strategy to develop redox-active compounds with extreme potentials but these are usually challenged by resource sustainability of the newly developed redox materials. Here, we investigate the utility of phosphine oxides as anolytes with extremely negative potentials. Specifically, we found that cyclic triphenylphosphine oxide (CPO), has a highly negative potential (−2.4 V vs Fc/Fc+). Importantly, CPO is synthesized from triphenylphosphine oxide, a common industrial chemical waste with no commercial value. Structural and electrochemical characterization of the reduced radical anion showed that enhanced stability is due to cyclization or extended pi-conjugation. Importantly, mechanistic investigation into the decomposition of CPO under various solvents and electrochemical conditions allowed us to utilize an acetonitrile/DMF binary solvent system to enable a long-lived anolyte which exhibited no fade over 350 cycles. In summary, this work led to the development of a waste-derived cyclic phosphine oxide that exhibits excellent cycling stability making it an ideal anolyte toward the development of energy-dense RFBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信