Constrained Visual Representation Learning With Bisimulation Metrics for Safe Reinforcement Learning

Rongrong Wang;Yuhu Cheng;Xuesong Wang
{"title":"Constrained Visual Representation Learning With Bisimulation Metrics for Safe Reinforcement Learning","authors":"Rongrong Wang;Yuhu Cheng;Xuesong Wang","doi":"10.1109/TIP.2024.3523798","DOIUrl":null,"url":null,"abstract":"Safe reinforcement learning aims to ensure the optimal performance while minimizing potential risks. In real-world applications, especially in scenarios that rely on visual inputs, a key challenge lies in the extraction of essential features for safe decision-making while maintaining the sample efficiency. To address this issue, we propose the constrained visual representation learning with bisimulation metrics for safe reinforcement learning (CVRL-BM). CVRL-BM constructs a sequential conditional variational inference model to compress high-dimensional visual observations into low-dimensional state representations. Additionally, safety bisimulation metrics are introduced to quantify the behavioral similarity between states, and our objective is to make the distance between any two latent state representations as close as possible to the safety bisimulation metric between their corresponding states. By integrating these two components, CVRL-BM is able to learn compact and information-rich visual state representations while satisfying predefined safety constraints. Experiments on Safety Gym show that CVRL-BM outperforms existing vision-based safe reinforcement learning methods in safety and efficacy. Particularly, CVRL-BM surpasses the state-of-the-art Safe SLAC method by achieving a 19.748% higher reward return, a 41.772% lower cost return, and a 5.027% decrease in cost regret. These results highlight the effectiveness of our proposed CVRL-BM.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"379-393"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10829536/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Safe reinforcement learning aims to ensure the optimal performance while minimizing potential risks. In real-world applications, especially in scenarios that rely on visual inputs, a key challenge lies in the extraction of essential features for safe decision-making while maintaining the sample efficiency. To address this issue, we propose the constrained visual representation learning with bisimulation metrics for safe reinforcement learning (CVRL-BM). CVRL-BM constructs a sequential conditional variational inference model to compress high-dimensional visual observations into low-dimensional state representations. Additionally, safety bisimulation metrics are introduced to quantify the behavioral similarity between states, and our objective is to make the distance between any two latent state representations as close as possible to the safety bisimulation metric between their corresponding states. By integrating these two components, CVRL-BM is able to learn compact and information-rich visual state representations while satisfying predefined safety constraints. Experiments on Safety Gym show that CVRL-BM outperforms existing vision-based safe reinforcement learning methods in safety and efficacy. Particularly, CVRL-BM surpasses the state-of-the-art Safe SLAC method by achieving a 19.748% higher reward return, a 41.772% lower cost return, and a 5.027% decrease in cost regret. These results highlight the effectiveness of our proposed CVRL-BM.
基于双模拟度量的约束视觉表示学习用于安全强化学习
安全强化学习的目的是在保证最佳性能的同时最小化潜在风险。在现实世界的应用中,特别是在依赖视觉输入的场景中,一个关键的挑战在于在保持样本效率的同时提取安全决策的基本特征。为了解决这个问题,我们提出了安全强化学习的约束视觉表征学习和双模拟度量(CVRL-BM)。CVRL-BM构建了顺序条件变分推理模型,将高维视觉观测压缩为低维状态表示。此外,引入了安全双模拟度量来量化状态之间的行为相似性,我们的目标是使任意两个潜在状态表示之间的距离尽可能接近其对应状态之间的安全双模拟度量。通过集成这两个组件,CVRL-BM能够学习紧凑且信息丰富的视觉状态表示,同时满足预定义的安全约束。在Safety Gym上的实验表明,CVRL-BM在安全性和有效性上都优于现有的基于视觉的安全强化学习方法。特别是,CVRL-BM超越了最先进的Safe SLAC方法,实现了19.748%的高回报,41.772%的低成本回报,5.027%的低成本后悔。这些结果突出了我们提出的CVRL-BM的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信