Tailoring the ionic conductivity of composite electrolyte by La-doping regulated Li4Ti5O12 for solid state lithium metal batteries

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Feng Gui , Xuan Zhou , Ke Huang , Xue Li , Zhihan Yan , Zhen Luo , Liwen Yang , Jianyu Huang , Gang Wang , Guobao Xu , Xing Ou
{"title":"Tailoring the ionic conductivity of composite electrolyte by La-doping regulated Li4Ti5O12 for solid state lithium metal batteries","authors":"Feng Gui ,&nbsp;Xuan Zhou ,&nbsp;Ke Huang ,&nbsp;Xue Li ,&nbsp;Zhihan Yan ,&nbsp;Zhen Luo ,&nbsp;Liwen Yang ,&nbsp;Jianyu Huang ,&nbsp;Gang Wang ,&nbsp;Guobao Xu ,&nbsp;Xing Ou","doi":"10.1016/j.actamat.2025.120720","DOIUrl":null,"url":null,"abstract":"<div><div>It is urgently required that polyethylene oxide (PEO) based electrolytes exhibit high Li<sup>+</sup> conductivity and exceptional interfacial compatibility at wide temperature. In this study, La-doped two-dimensional (2D) Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> nanosheets (La-LTO NSs) are firstly introduced into PEO (La-LTO/PL) to achieve composite polymer electrolytes (CPEs). The La-doping regulated Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> with high aspect ratio and rich oxygen vacancy can significantly enhance the amorphous region and anchor adequate TFSI<sup>−</sup>. Furthermore, the DFT calculation reveals that enrichment of charge density gather around La element and oxygen vacancies, indicating the stronger interaction between La-LTO NSs and PEO/TFSI<sup>−</sup>. Therefore, the CPEs deliver multiple ion-transport channels including the interface between the La-LTO NSs and PEO, PEO chains and La-LTO NSs, enabling fast Li-ion transport and highly stable interface. As a result, the CPEs exhibit impressive ionic conductivity (2 × 10<sup>−4</sup> S cm<sup>−1</sup> under 30 °C, 1 × 10<sup>−3</sup> S cm<sup>−1</sup> under 60 °C) and steady electrochemical impedance value during 22 days. While the all-solid-state Li|LiFePO<sub>4</sub> (Li|LFP) cells deliver remarkable cycle stability for 400 cycles with 80 % capacity retention at 0.2 C under 30 °C. Moreover, the pouch cell of Li|LFP maintains approximately 92.0 % capacity retention after 200 cycles. This work promotes the applications of CPEs in high-performance solid-state Li batteries.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"286 ","pages":"Article 120720"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425000138","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is urgently required that polyethylene oxide (PEO) based electrolytes exhibit high Li+ conductivity and exceptional interfacial compatibility at wide temperature. In this study, La-doped two-dimensional (2D) Li4Ti5O12 nanosheets (La-LTO NSs) are firstly introduced into PEO (La-LTO/PL) to achieve composite polymer electrolytes (CPEs). The La-doping regulated Li4Ti5O12 with high aspect ratio and rich oxygen vacancy can significantly enhance the amorphous region and anchor adequate TFSI. Furthermore, the DFT calculation reveals that enrichment of charge density gather around La element and oxygen vacancies, indicating the stronger interaction between La-LTO NSs and PEO/TFSI. Therefore, the CPEs deliver multiple ion-transport channels including the interface between the La-LTO NSs and PEO, PEO chains and La-LTO NSs, enabling fast Li-ion transport and highly stable interface. As a result, the CPEs exhibit impressive ionic conductivity (2 × 10−4 S cm−1 under 30 °C, 1 × 10−3 S cm−1 under 60 °C) and steady electrochemical impedance value during 22 days. While the all-solid-state Li|LiFePO4 (Li|LFP) cells deliver remarkable cycle stability for 400 cycles with 80 % capacity retention at 0.2 C under 30 °C. Moreover, the pouch cell of Li|LFP maintains approximately 92.0 % capacity retention after 200 cycles. This work promotes the applications of CPEs in high-performance solid-state Li batteries.

Abstract Image

Abstract Image

利用la掺杂调控Li4Ti5O12调整固态锂金属电池复合电解质的离子电导率
迫切需要聚乙烯氧化物(PEO)基电解质在宽温度下具有高Li+导电性和优异的界面相容性。在本研究中,首次将la掺杂的二维(2D) Li4Ti5O12纳米片(La-LTO NSs)引入到PEO (La-LTO/PL)中,以获得复合聚合物电解质(cpe)。高宽高比和富氧空位的la掺杂调控Li4Ti5O12能显著增强非晶态区,锚定足够的TFSI−。此外,DFT计算表明,富集的电荷密度聚集在La元素和氧空位周围,表明La- lto NSs与PEO/TFSI−之间的相互作用更强。因此,cpe提供了多个离子传输通道,包括La-LTO NSs与PEO、PEO链和La-LTO NSs之间的接口,实现了快速的锂离子传输和高度稳定的接口。结果表明,cpe表现出令人印象深刻的离子电导率(在30°C下2×10−4 S cm−1,在60°C下1×10−3 S cm−1)和22天内稳定的电化学阻抗值。而全固态Li|LiFePO4 (Li|LFP)电池在30°C下0.2℃条件下可提供400次循环的优异稳定性,容量保持率为80%。此外,Li|LFP的袋状电池在200次循环后仍保持约92.0%的容量保留。这项工作促进了cpe在高性能固态锂电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信