Marcel Costa-Garcia, Laura Moya-Borrego, Ramon Alemany Bonastre, Rafael Moreno Olié
{"title":"Optimized protocol for culturing menstrual blood-derived MSCs for combination with oncolytic adenoviruses in cancer treatment.","authors":"Marcel Costa-Garcia, Laura Moya-Borrego, Ramon Alemany Bonastre, Rafael Moreno Olié","doi":"10.1016/j.omton.2024.200907","DOIUrl":null,"url":null,"abstract":"<p><p>Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions. MenSCs were isolated from donors of different ages and cultured under normoxic and hypoxic conditions, with varying adherence capacities. Hypoxic conditions significantly improved MenSCs proliferation and tumor migration capabilities, as demonstrated by proliferation assays and RNA-sequencing analysis, which revealed upregulation of genes related to cell division and tumor tropism. <i>In vivo</i> studies using a lung adenocarcinoma mouse model confirmed that hypoxia-conditioned MenSCs had superior tumor-homing abilities. The study also demonstrated the feasibility of establishing a master and working cell bank from a single menstrual blood donation. These findings suggest that hypoxia-conditioned MenSCs could be highly effective as OV carriers, potentially leading to better clinical outcomes in cancer treatment by enhancing tumor targeting and therapeutic efficacy.</p>","PeriodicalId":519884,"journal":{"name":"Molecular therapy. Oncology","volume":"32 4","pages":"200907"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular therapy. Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.omton.2024.200907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions. MenSCs were isolated from donors of different ages and cultured under normoxic and hypoxic conditions, with varying adherence capacities. Hypoxic conditions significantly improved MenSCs proliferation and tumor migration capabilities, as demonstrated by proliferation assays and RNA-sequencing analysis, which revealed upregulation of genes related to cell division and tumor tropism. In vivo studies using a lung adenocarcinoma mouse model confirmed that hypoxia-conditioned MenSCs had superior tumor-homing abilities. The study also demonstrated the feasibility of establishing a master and working cell bank from a single menstrual blood donation. These findings suggest that hypoxia-conditioned MenSCs could be highly effective as OV carriers, potentially leading to better clinical outcomes in cancer treatment by enhancing tumor targeting and therapeutic efficacy.