Lei Jiang, Justin Wang, Ze Liu, Qian Zhang, Xiang-Lei Yang
{"title":"Seryl-tRNA synthetase inhibits Wnt signaling and breast cancer progression and metastasis.","authors":"Lei Jiang, Justin Wang, Ze Liu, Qian Zhang, Xiang-Lei Yang","doi":"10.1096/fj.202401720R","DOIUrl":null,"url":null,"abstract":"<p><p>Tumors require ample protein synthesis to grow, and aminoacyl-tRNA synthetases, as critical translation factors, are expected to support cancer progression. Unexpectedly, overexpression of seryl-tRNA synthetase (SerRS) suppresses primary tumor growth of breast cancer. However, the effects of SerRS on metastasis have not been studied. We observe a decrease in SerRS expression in breast cancer patient metastases compared with matched primary tumors, suggesting an inhibitory role of SerRS in metastasis. Through mouse metastasis models using breast cancer cell lines overexpressing SerRS, we show that SerRS impedes not only primary tumor growth but also establishment of metastases, and the effect of SerRS on metastasis can be independent of its impact on the primary tumor. SerRS also inhibits tumor growth with induced, post-tumor-onset overexpression, demonstrating its potential as an anticancer therapeutic. Tumor RNA-seq analysis identified Wnt signaling among the top SerRS-regulated pathways. Using cell-based studies, we confirm SerRS suppresses Wnt signaling and metastatic processes in breast cancer cells. To the best of our knowledge, this is the first study to show a component of the translation machinery can act as both a tumor and metastasis suppressor.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 1","pages":"e70294"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1096/fj.202401720R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumors require ample protein synthesis to grow, and aminoacyl-tRNA synthetases, as critical translation factors, are expected to support cancer progression. Unexpectedly, overexpression of seryl-tRNA synthetase (SerRS) suppresses primary tumor growth of breast cancer. However, the effects of SerRS on metastasis have not been studied. We observe a decrease in SerRS expression in breast cancer patient metastases compared with matched primary tumors, suggesting an inhibitory role of SerRS in metastasis. Through mouse metastasis models using breast cancer cell lines overexpressing SerRS, we show that SerRS impedes not only primary tumor growth but also establishment of metastases, and the effect of SerRS on metastasis can be independent of its impact on the primary tumor. SerRS also inhibits tumor growth with induced, post-tumor-onset overexpression, demonstrating its potential as an anticancer therapeutic. Tumor RNA-seq analysis identified Wnt signaling among the top SerRS-regulated pathways. Using cell-based studies, we confirm SerRS suppresses Wnt signaling and metastatic processes in breast cancer cells. To the best of our knowledge, this is the first study to show a component of the translation machinery can act as both a tumor and metastasis suppressor.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.