A Fast Nonparametric Sampling Method for Time to Event in Individual-Level Simulation Models.

IF 3.1 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Medical Decision Making Pub Date : 2025-02-01 Epub Date: 2025-01-05 DOI:10.1177/0272989X241308768
David U Garibay-Treviño, Hawre Jalal, Fernando Alarid-Escudero
{"title":"A Fast Nonparametric Sampling Method for Time to Event in Individual-Level Simulation Models.","authors":"David U Garibay-Treviño, Hawre Jalal, Fernando Alarid-Escudero","doi":"10.1177/0272989X241308768","DOIUrl":null,"url":null,"abstract":"<p><strong>Highlights: </strong>The nonparametric sampling method is generic and can sample times to an event from any discrete (or discretizable) hazard without requiring any parametric assumption.The method is showcased with 5 commonly used distributions in discrete-event simulation models.The method produced very similar expected times to events, as well as their probability distribution, compared with analytical results.We provide a multivariate categorical sampling function for R and Python programming languages to sample times to events from processes with different hazards simultaneously.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"205-213"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X241308768","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights: The nonparametric sampling method is generic and can sample times to an event from any discrete (or discretizable) hazard without requiring any parametric assumption.The method is showcased with 5 commonly used distributions in discrete-event simulation models.The method produced very similar expected times to events, as well as their probability distribution, compared with analytical results.We provide a multivariate categorical sampling function for R and Python programming languages to sample times to events from processes with different hazards simultaneously.

个体水平仿真模型中时间到事件的快速非参数采样方法。
重点:非参数采样方法是通用的,可以从任何离散(或可离散)危险中采样到事件的时间,而不需要任何参数假设。以离散事件仿真模型中常用的5种分布为例进行了说明。与分析结果相比,该方法产生的事件预期时间及其概率分布非常相似。我们为R和Python编程语言提供了一个多变量分类抽样函数,用于同时从具有不同危险的过程中对事件进行采样时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Decision Making
Medical Decision Making 医学-卫生保健
CiteScore
6.50
自引率
5.60%
发文量
146
审稿时长
6-12 weeks
期刊介绍: Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信