Enhancing percutaneous coronary intervention using TriVOCTNet: a multi-task deep learning model for comprehensive intravascular optical coherence tomography analysis.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yu Shi Lau, Li Kuo Tan, Kok Han Chee, Chow Khuen Chan, Yih Miin Liew
{"title":"Enhancing percutaneous coronary intervention using TriVOCTNet: a multi-task deep learning model for comprehensive intravascular optical coherence tomography analysis.","authors":"Yu Shi Lau, Li Kuo Tan, Kok Han Chee, Chow Khuen Chan, Yih Miin Liew","doi":"10.1007/s13246-024-01509-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neointimal coverage and stent apposition, as assessed from intravascular optical coherence tomography (IVOCT) images, are crucial for optimizing percutaneous coronary intervention (PCI). Existing state-of-the-art computer algorithms designed to automate this analysis often treat lumen and stent segmentations as separate target entities, applicable only to a single stent type and overlook automation of preselecting which pullback segments need segmentation, thus limit their practicality. This study aimed for an algorithm capable of intelligently handling the entire IVOCT pullback across different phases of PCI and clinical scenarios, including the presence and coexistence of metal and bioresorbable vascular scaffold (BVS), stent types. We propose a multi-task deep learning model, named TriVOCTNet, that automates image classification/selection, lumen segmentation and stent struts segmentation within a single network by integrating classification, regression and pixel-level segmentation models. This approach allowed a single-network, single-pass implementation with all tasks parallelized for speed and convenience. A joint loss function was specifically designed to optimize each task in situations where each task may or may not be present. Evaluation on 4,746 images achieved classification accuracies of 0.999, 0.997, and 0.998 for lumen, BVS, and metal stent features, respectively. The lumen segmentation performance showed a Euclidean distance error of 21.72 μm and Dice's coefficient of 0.985. For BVS struts segmentation, the Dice's coefficient was 0.896, and for metal stent struts segmentation, the precision was 0.895 and sensitivity was 0.868. TriVOCTNet highlights its clinical potential due to its fast and accurate results, and simplicity in handling all tasks and scenarios through a single system.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01509-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neointimal coverage and stent apposition, as assessed from intravascular optical coherence tomography (IVOCT) images, are crucial for optimizing percutaneous coronary intervention (PCI). Existing state-of-the-art computer algorithms designed to automate this analysis often treat lumen and stent segmentations as separate target entities, applicable only to a single stent type and overlook automation of preselecting which pullback segments need segmentation, thus limit their practicality. This study aimed for an algorithm capable of intelligently handling the entire IVOCT pullback across different phases of PCI and clinical scenarios, including the presence and coexistence of metal and bioresorbable vascular scaffold (BVS), stent types. We propose a multi-task deep learning model, named TriVOCTNet, that automates image classification/selection, lumen segmentation and stent struts segmentation within a single network by integrating classification, regression and pixel-level segmentation models. This approach allowed a single-network, single-pass implementation with all tasks parallelized for speed and convenience. A joint loss function was specifically designed to optimize each task in situations where each task may or may not be present. Evaluation on 4,746 images achieved classification accuracies of 0.999, 0.997, and 0.998 for lumen, BVS, and metal stent features, respectively. The lumen segmentation performance showed a Euclidean distance error of 21.72 μm and Dice's coefficient of 0.985. For BVS struts segmentation, the Dice's coefficient was 0.896, and for metal stent struts segmentation, the precision was 0.895 and sensitivity was 0.868. TriVOCTNet highlights its clinical potential due to its fast and accurate results, and simplicity in handling all tasks and scenarios through a single system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信