A graph neural architecture search approach for identifying bots in social media.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1509179
Georgios Tzoumanekas, Michail Chatzianastasis, Loukas Ilias, George Kiokes, John Psarras, Dimitris Askounis
{"title":"A graph neural architecture search approach for identifying bots in social media.","authors":"Georgios Tzoumanekas, Michail Chatzianastasis, Loukas Ilias, George Kiokes, John Psarras, Dimitris Askounis","doi":"10.3389/frai.2024.1509179","DOIUrl":null,"url":null,"abstract":"<p><p>Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1509179"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1509179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.

一种用于识别社交媒体机器人的图神经架构搜索方法。
包括X、Facebook和Instagram在内的社交媒体平台每天都有数百万用户,这催生了机器人自动程序,传播错误信息和意识形态,对现实世界产生了切实的影响。虽然X平台上的机器人检测已经成为许多深度学习模型的领域,并取得了足够的结果,但大多数方法都忽略了社交媒体关系的图结构,并且通常依赖于手工设计的架构。我们的工作介绍了一种神经架构搜索(NAS)技术的实现,即深度和灵活的图神经架构搜索(DFG-NAS),专门针对关系图卷积神经网络(RGCNs)在x平台上的机器人检测任务。我们的模型构建了一个包含用户关系及其元数据的图。然后,利用DFG-NAS自动搜索RGCNs中传播和转换函数的最优配置。我们的实验是在TwiBot-20数据集上进行的,构建了一个有229,580个节点和227,979条边的图。我们在搜索过程中研究了具有最高性能的五种架构,并实现了85.7%的准确率,超过了最先进的模型。我们的方法不仅解决了机器人检测的挑战,而且倡导在神经网络设计自动化中更广泛地实施NAS模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信