FOXM1-Cx31 Axis Drives Pancreatic Cancer Stem Cell-Like Properties and Chemoresistance.

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Carcinogenesis Pub Date : 2025-03-01 Epub Date: 2025-01-06 DOI:10.1002/mc.23870
Yang Chen, Qihui Sun, Qi Zou, Xiaoqi Zhu, Tingting Wen, Xiaojia Li, Shu Li, Jie He, Fang Wei, Keping Xie
{"title":"FOXM1-Cx31 Axis Drives Pancreatic Cancer Stem Cell-Like Properties and Chemoresistance.","authors":"Yang Chen, Qihui Sun, Qi Zou, Xiaoqi Zhu, Tingting Wen, Xiaojia Li, Shu Li, Jie He, Fang Wei, Keping Xie","doi":"10.1002/mc.23870","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood. We analyzed Cx31 expression in pancreatic cancer tissues and cell lines using public databases and experimental models. The correlation between Cx31 expression and clinical outcomes was evaluated. The effects of Cx31 on pancreatic cancer cell proliferation, stemness, migration, chemoresistance, and immune infiltration were investigated. Transcriptome analysis and bioinformatics tools were employed to explore the underlying mechanisms. Cx31 was found to be upregulated in pancreatic cancer tissues compared to normal tissues, and its high expression correlated with shorter overall survival and higher mortality risk. Cx31 promoted acinar-to-ductal metaplasia (ADM), stemness, proliferation, migration, metastasis, and chemoresistance in pancreatic cancer cells. Bioinformatics analysis suggested a positive correlation between Cx31 and stemness-related genes. Cx31 knockdown altered the expression of genes involved in stemness and chemoresistance pathways, such as Wnt and Notch. Additionally, Cx31 was identified as a direct target of the transcription factor FOXM1, which upregulated its expression. Cx31 plays a multifaceted role in pancreatic cancer, influencing processes from initiation to metastasis and chemoresistance. It may serve as a potential therapeutic target to combat the aggressive nature of pancreatic cancer. The FOXM1-Cx31 axis could be a promising target for overcoming treatment resistance in pancreatic cancer.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"565-579"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23870","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood. We analyzed Cx31 expression in pancreatic cancer tissues and cell lines using public databases and experimental models. The correlation between Cx31 expression and clinical outcomes was evaluated. The effects of Cx31 on pancreatic cancer cell proliferation, stemness, migration, chemoresistance, and immune infiltration were investigated. Transcriptome analysis and bioinformatics tools were employed to explore the underlying mechanisms. Cx31 was found to be upregulated in pancreatic cancer tissues compared to normal tissues, and its high expression correlated with shorter overall survival and higher mortality risk. Cx31 promoted acinar-to-ductal metaplasia (ADM), stemness, proliferation, migration, metastasis, and chemoresistance in pancreatic cancer cells. Bioinformatics analysis suggested a positive correlation between Cx31 and stemness-related genes. Cx31 knockdown altered the expression of genes involved in stemness and chemoresistance pathways, such as Wnt and Notch. Additionally, Cx31 was identified as a direct target of the transcription factor FOXM1, which upregulated its expression. Cx31 plays a multifaceted role in pancreatic cancer, influencing processes from initiation to metastasis and chemoresistance. It may serve as a potential therapeutic target to combat the aggressive nature of pancreatic cancer. The FOXM1-Cx31 axis could be a promising target for overcoming treatment resistance in pancreatic cancer.

FOXM1-Cx31轴驱动胰腺癌干细胞样特性和化疗耐药
胰腺癌是一种高度致命的恶性肿瘤,几乎没有有效的治疗选择。Connexin 31 (Cx31)是一种膜蛋白,能够形成六聚体通道,促进代谢物和信号分子的交换。然而,Cx31在胰腺癌的发生和发展中的作用仍不清楚。我们使用公共数据库和实验模型分析了Cx31在胰腺癌组织和细胞系中的表达。评估Cx31表达与临床结果的相关性。研究了Cx31对胰腺癌细胞增殖、干细胞性、迁移、化疗耐药和免疫浸润的影响。转录组分析和生物信息学工具被用来探索潜在的机制。与正常组织相比,Cx31在胰腺癌组织中表达上调,其高表达与较短的总生存期和较高的死亡风险相关。Cx31促进胰腺癌细胞的腺泡到导管化生(ADM)、干性、增殖、迁移、转移和化疗耐药。生物信息学分析表明Cx31与干细胞相关基因呈正相关。Cx31敲低改变了参与干细胞和化学耐药途径的基因的表达,如Wnt和Notch。此外,Cx31被鉴定为转录因子FOXM1的直接靶点,从而上调其表达。Cx31在胰腺癌中起着多方面的作用,影响从起始到转移和化疗耐药的过程。它可能作为对抗胰腺癌侵袭性的潜在治疗靶点。FOXM1-Cx31轴可能是克服胰腺癌治疗耐药的一个有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信