Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Subha Yegnaswamy, Selvaa Kumar C, Ebtisam Aldaais
{"title":"Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex.","authors":"Subha Yegnaswamy, Selvaa Kumar C, Ebtisam Aldaais","doi":"10.1080/07391102.2024.2437529","DOIUrl":null,"url":null,"abstract":"<p><p>The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-15"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2437529","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信