Beatrice Wolff, Christian Hellenbrandt, Peter Jakes, Rüdiger-A Eichel, Josef Granwehr, Florian Hausen
{"title":"Correlative Electron Paramagnetic Resonance Imaging and Atomic Force Microscopy of Lithium Deposited on Copper.","authors":"Beatrice Wolff, Christian Hellenbrandt, Peter Jakes, Rüdiger-A Eichel, Josef Granwehr, Florian Hausen","doi":"10.1002/cphc.202400937","DOIUrl":null,"url":null,"abstract":"<p><p>Anode free concepts are gaining traction in battery research. To improve cyclability, a better understanding of the deposition processes and morphologies is necessary. Correlative experiments enable a link between a variety of properties obtained, such as chemical, mechanical or electrochemical data. Here, electron paramagnetic resonance imaging (EPRI) is correlated with atomic force microscopy (AFM) to gain a deeper understanding of the microscopic topography and local stiffness at different intensities of the lithium selective EPRI map. Experiments were carried out on a sample of lithium deposited on copper foil from standard battery electrolyte. The correlation of both methods reveals that EPRI has a high sensitivity towards small lithium structures, while bulk lithium was not detected. The results demonstrate that EPRI can be used for prescreening to identify regions with different properties, which can then be analysed individually by AFM.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400937"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400937","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anode free concepts are gaining traction in battery research. To improve cyclability, a better understanding of the deposition processes and morphologies is necessary. Correlative experiments enable a link between a variety of properties obtained, such as chemical, mechanical or electrochemical data. Here, electron paramagnetic resonance imaging (EPRI) is correlated with atomic force microscopy (AFM) to gain a deeper understanding of the microscopic topography and local stiffness at different intensities of the lithium selective EPRI map. Experiments were carried out on a sample of lithium deposited on copper foil from standard battery electrolyte. The correlation of both methods reveals that EPRI has a high sensitivity towards small lithium structures, while bulk lithium was not detected. The results demonstrate that EPRI can be used for prescreening to identify regions with different properties, which can then be analysed individually by AFM.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.