Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in breast cancer.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Xiaozhou Yang, Xiaojun Yang, Haili Tang, Xin Chen, Jiangang Wang, Huadong Zhao
{"title":"Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in breast cancer.","authors":"Xiaozhou Yang, Xiaojun Yang, Haili Tang, Xin Chen, Jiangang Wang, Huadong Zhao","doi":"10.1007/s12672-025-01742-w","DOIUrl":null,"url":null,"abstract":"<p><p>A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed. Our research utilized bioinformatics techniques and TCGA data to explore the complex relationship between CSCs and BRCA development. We identified 26 stem cell gene sets from the Stem Checker database and classified BRCA samples into stemness subtypes using consensus clustering. Prognosis, tumor microenvironment (TME) elements, and treatment responses varied across subtypes. Using LASSO, Cox regression, and differential expression analysis, we developed a stemness-risk model. BRCA patients were divided into two groups (Cluster A and Cluster B). Cluster B exhibited an improved prognosis, higher PIK3CA mutation frequency, and increased levels of CD8 T cells and regulatory Tregs. A 5-gene stemness model was constructed, showing that higher stemness scores correlated with poorer prognosis. The model was validated using the METABRIC cohort data from cBioPortal. Our findings identify two stemness-related subgroups with distinct prognoses and TME patterns. Further experimental validation is necessary before this model can be considered for clinical application.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"9"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01742-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed. Our research utilized bioinformatics techniques and TCGA data to explore the complex relationship between CSCs and BRCA development. We identified 26 stem cell gene sets from the Stem Checker database and classified BRCA samples into stemness subtypes using consensus clustering. Prognosis, tumor microenvironment (TME) elements, and treatment responses varied across subtypes. Using LASSO, Cox regression, and differential expression analysis, we developed a stemness-risk model. BRCA patients were divided into two groups (Cluster A and Cluster B). Cluster B exhibited an improved prognosis, higher PIK3CA mutation frequency, and increased levels of CD8 T cells and regulatory Tregs. A 5-gene stemness model was constructed, showing that higher stemness scores correlated with poorer prognosis. The model was validated using the METABRIC cohort data from cBioPortal. Our findings identify two stemness-related subgroups with distinct prognoses and TME patterns. Further experimental validation is necessary before this model can be considered for clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信