{"title":"Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.","authors":"Shaoju Qian, Danqiong Zhang, Ruixue Li, Xiaoming Sha, Shuao Lu, Lin Pan, Xianfeng Hui, Tiesuo Zhao, Xiangfeng Song, Lili Yu","doi":"10.1007/s00018-024-05555-y","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression. Analysis of the FcRn promoter revealed that the -1296- to -919-bp region is the key regulatory region, with the CG site at -967/-966 bp being the critical methylation site. The transcription factor JUN binds to this CG site to increase FcRn transcription; however, its activity was significantly inhibited by DNMT3b overexpression. Moreover, 5-Aza-2 effectively reduced HSV-1-induced lung injury and inhibited ferroptosis. Transcriptomic sequencing revealed that the ferroptosis pathway was highly activated in the lung tissues of FcRn-knockout mice via the p53/SLC7A11 pathway. Furthermore, in vivo and in vivo experiments showed that FcRn knockout aggravated lung epithelial cell inflammation by promoting ferroptosis; however, this effect was reversed by a ferroptosis inhibitor. Thus, HSV-1 infection suppressed FcRn expression through promoter methylation and promoted ferroptosis and lung injury. These findings reveal a novel molecular mechanism underlying viral lung injury and suggest potential therapeutic strategies for targeting FcRn.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"36"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05555-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression. Analysis of the FcRn promoter revealed that the -1296- to -919-bp region is the key regulatory region, with the CG site at -967/-966 bp being the critical methylation site. The transcription factor JUN binds to this CG site to increase FcRn transcription; however, its activity was significantly inhibited by DNMT3b overexpression. Moreover, 5-Aza-2 effectively reduced HSV-1-induced lung injury and inhibited ferroptosis. Transcriptomic sequencing revealed that the ferroptosis pathway was highly activated in the lung tissues of FcRn-knockout mice via the p53/SLC7A11 pathway. Furthermore, in vivo and in vivo experiments showed that FcRn knockout aggravated lung epithelial cell inflammation by promoting ferroptosis; however, this effect was reversed by a ferroptosis inhibitor. Thus, HSV-1 infection suppressed FcRn expression through promoter methylation and promoted ferroptosis and lung injury. These findings reveal a novel molecular mechanism underlying viral lung injury and suggest potential therapeutic strategies for targeting FcRn.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered