Physiologically based pharmacokinetic (PBPK) modeling of gliclazide for different genotypes of CYP2C9 and CYP2C19.

IF 6.9 3区 医学 Q1 CHEMISTRY, MEDICINAL
Hye-Jung Park, Sang-Ho Lee, Pureum Kang, Chang-Keun Cho, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi
{"title":"Physiologically based pharmacokinetic (PBPK) modeling of gliclazide for different genotypes of CYP2C9 and CYP2C19.","authors":"Hye-Jung Park, Sang-Ho Lee, Pureum Kang, Chang-Keun Cho, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi","doi":"10.1007/s12272-024-01528-8","DOIUrl":null,"url":null,"abstract":"<p><p>Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide. In the present study, the physiologically based pharmacokinetic (PBPK) model was developed using data from subjects whose pharmacokinetic parameters were influenced by the genetic polymorphisms of the CYP metabolic enzymes. All predicted plasma concentration-time profiles generated by the model showed visual agreement with the observed data, and the pharmacokinetic results were within the twofold error range. Individual simulation results showed additional metrics: average fold error (- 0.19 to 0.07), geometric mean fold error (1.13-1.56), and mean relative deviation (1.18-1.58) for AUC, C<sub>max</sub>, T<sub>1/2</sub>, T<sub>max</sub>, CL/F, and V<sub>d</sub> values. These results met the standard evaluation criteria. The validation across a total of 8 studies and 7 races also satisfied the twofold error range for AUC, C<sub>max</sub>, and T<sub>1/2</sub>. Therefore, variations in gliclazide exposure according to individuals' CYP2C9 and CYP2C19 genotypes were properly captured through PBPK modeling in this study. This PBPK model may allow us to predict the gliclazide pharmacokinetics of patients with genetic polymorphisms in CYP2C9 and CYPC19 under various conditions, ultimately contributing to the realization of individualized drug therapy.</p>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12272-024-01528-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide. In the present study, the physiologically based pharmacokinetic (PBPK) model was developed using data from subjects whose pharmacokinetic parameters were influenced by the genetic polymorphisms of the CYP metabolic enzymes. All predicted plasma concentration-time profiles generated by the model showed visual agreement with the observed data, and the pharmacokinetic results were within the twofold error range. Individual simulation results showed additional metrics: average fold error (- 0.19 to 0.07), geometric mean fold error (1.13-1.56), and mean relative deviation (1.18-1.58) for AUC, Cmax, T1/2, Tmax, CL/F, and Vd values. These results met the standard evaluation criteria. The validation across a total of 8 studies and 7 races also satisfied the twofold error range for AUC, Cmax, and T1/2. Therefore, variations in gliclazide exposure according to individuals' CYP2C9 and CYP2C19 genotypes were properly captured through PBPK modeling in this study. This PBPK model may allow us to predict the gliclazide pharmacokinetics of patients with genetic polymorphisms in CYP2C9 and CYPC19 under various conditions, ultimately contributing to the realization of individualized drug therapy.

格列齐特对不同基因型CYP2C9和CYP2C19的生理药代动力学(PBPK)建模
格列齐特是一种磺脲类降糖药,用于治疗2型糖尿病。细胞色素P450 (CYP) 2C9和CYP2C19主要参与格列齐特的肝脏代谢。这两种CYP同工酶具有高度多态性,它们的遗传多态性已知会显著影响格列齐特的药代动力学。在本研究中,利用药物动力学参数受CYP代谢酶遗传多态性影响的受试者的数据,建立了基于生理的药代动力学(PBPK)模型。模型生成的所有预测血浆浓度-时间曲线与观测数据在视觉上一致,药代动力学结果在两倍误差范围内。单个模拟结果显示了额外的指标:AUC、Cmax、T1/2、Tmax、CL/F和Vd值的平均折叠误差(- 0.19 ~ 0.07)、几何平均折叠误差(1.13 ~ 1.56)和平均相对偏差(1.18 ~ 1.58)。这些结果符合标准评价标准。共8项研究和7个种族的验证也满足AUC, Cmax和T1/2的两倍误差范围。因此,本研究通过PBPK模型恰当地捕获了个体CYP2C9和CYP2C19基因型对格列齐特暴露的影响。该PBPK模型可以帮助我们预测CYP2C9和CYPC19基因多态性患者在不同条件下的格列齐特药代动力学,最终实现个体化药物治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.40
自引率
9.00%
发文量
48
审稿时长
3.3 months
期刊介绍: Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信