Synthesis and antitumor effects of novel betulinic acid derivatives bearing electrophilic moieties

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sen Cai , Xiuhan Guo , Haozhe Yang , Tianyu Zhao , Yueqing Li , Ning Deng , Zhigang Gao , Qingwei Meng , Xiaorui Li , Shisheng Wang
{"title":"Synthesis and antitumor effects of novel betulinic acid derivatives bearing electrophilic moieties","authors":"Sen Cai ,&nbsp;Xiuhan Guo ,&nbsp;Haozhe Yang ,&nbsp;Tianyu Zhao ,&nbsp;Yueqing Li ,&nbsp;Ning Deng ,&nbsp;Zhigang Gao ,&nbsp;Qingwei Meng ,&nbsp;Xiaorui Li ,&nbsp;Shisheng Wang","doi":"10.1016/j.bmc.2025.118062","DOIUrl":null,"url":null,"abstract":"<div><div>Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized. Most of these BA derivatives exhibited improved antiproliferative activity against MCF-7, HeLa, MDA-MB-231 cells in MTT assay, especially the compound <strong>15b</strong> (IC<sub>50</sub> = 1.09 μM against MCF-7 cells). Further study demonstrated that 1<strong>5b</strong> inhibited the migration and clone formation of MCF-7 cells, induced the apoptosis, autophagy and cycle arrest at G2/M phase in MCF-7 cells, and promoted the production of intracellular reactive oxygen species (ROS). Western blot analysis showed that <strong>15b</strong> inhibited AKT/mTOR signaling pathway in MCF-7 cells. In addition, <strong>15b</strong> reversed the resistance of JIMT-1 cells to trastuzumab, which might be related to the inhibition of AKT/mTOR pathway. Finally, <strong>15b</strong> significantly inhibited the growth of tumor in the breast cancer xenograft mouse model with 36 % inhibition rate of tumor growth and without significant reduction of mouse body weight.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"119 ","pages":"Article 118062"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625000033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized. Most of these BA derivatives exhibited improved antiproliferative activity against MCF-7, HeLa, MDA-MB-231 cells in MTT assay, especially the compound 15b (IC50 = 1.09 μM against MCF-7 cells). Further study demonstrated that 15b inhibited the migration and clone formation of MCF-7 cells, induced the apoptosis, autophagy and cycle arrest at G2/M phase in MCF-7 cells, and promoted the production of intracellular reactive oxygen species (ROS). Western blot analysis showed that 15b inhibited AKT/mTOR signaling pathway in MCF-7 cells. In addition, 15b reversed the resistance of JIMT-1 cells to trastuzumab, which might be related to the inhibition of AKT/mTOR pathway. Finally, 15b significantly inhibited the growth of tumor in the breast cancer xenograft mouse model with 36 % inhibition rate of tumor growth and without significant reduction of mouse body weight.

Abstract Image

新型亲电白桦酸衍生物的合成及抗肿瘤作用。
白桦酸(BA)是一种天然存在的狼烷五环三萜,具有抗病毒、抗炎、抗肿瘤等多种生物活性。共价抑制剂的特点是与靶蛋白的特定氨基酸残基形成共价键的亲电弹头,由于其特殊的选择性和有效性,在过去十年中在抗癌药物的发现中引起了极大的关注。本研究用亲电基团对BA进行结构修饰,合成了23个BA衍生物。在MTT实验中,大部分BA衍生物对MCF-7、HeLa、MDA-MB-231细胞的抗增殖活性均有提高,其中化合物15b对MCF-7细胞的IC50值为1.09 μM。进一步研究表明,15b抑制MCF-7细胞的迁移和克隆形成,诱导MCF-7细胞凋亡、自噬和G2/M期周期阻滞,促进细胞内活性氧(ROS)的产生。Western blot分析显示,15b抑制MCF-7细胞中AKT/mTOR信号通路。此外,15b逆转了JIMT-1细胞对曲妥珠单抗的耐药,这可能与抑制AKT/mTOR通路有关。最后,在乳腺癌异种移植小鼠模型中,15b显著抑制肿瘤生长,肿瘤生长抑制率为36%,且小鼠体重未明显减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信