Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-01-05 DOI:10.1002/pmic.202400191
Alessandro Tanca, Simona Masia, Piero Giustacchini, Sergio Uzzau
{"title":"Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.","authors":"Alessandro Tanca, Simona Masia, Piero Giustacchini, Sergio Uzzau","doi":"10.1002/pmic.202400191","DOIUrl":null,"url":null,"abstract":"<p><p>Metaproteomics is a valuable approach to characterize the biological functions involved in the gut microbiota (GM) response to dietary interventions. Ketogenic diets (KDs) are very effective in controlling seizure severity and frequency in drug-resistant epilepsy (DRE) and in the weight loss management in obese/overweight individuals. This case study provides proof of concept for the suitability of metaproteomics to monitor changes in taxonomic and functional GM features in an individual on a short-term very low-calorie ketogenic diet (VLCKD, 4 weeks), followed by a low-calorie diet (LCD). A marked increase in Akkermansia and Pseudomonadota was observed during VLCKD and reversed after the partial reintroduction of carbohydrates (LCD), in agreement with the results of previous metagenomic studies. In functional terms, the relative increase in Akkermansia was associated with an increased production of proteins involved in response to stress and biosynthesis of gamma-aminobutyric acid. In addition, VLCKD caused a relative increase in enzymes involved in the synthesis of the beta-ketoacid acetoacetate and of the ketogenic amino acid leucine. Our data support the potential of fecal metaproteomics to investigate the GM-dependent effect of KD as a therapeutic option in obese/overweight individuals and DRE patients.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400191"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400191","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Metaproteomics is a valuable approach to characterize the biological functions involved in the gut microbiota (GM) response to dietary interventions. Ketogenic diets (KDs) are very effective in controlling seizure severity and frequency in drug-resistant epilepsy (DRE) and in the weight loss management in obese/overweight individuals. This case study provides proof of concept for the suitability of metaproteomics to monitor changes in taxonomic and functional GM features in an individual on a short-term very low-calorie ketogenic diet (VLCKD, 4 weeks), followed by a low-calorie diet (LCD). A marked increase in Akkermansia and Pseudomonadota was observed during VLCKD and reversed after the partial reintroduction of carbohydrates (LCD), in agreement with the results of previous metagenomic studies. In functional terms, the relative increase in Akkermansia was associated with an increased production of proteins involved in response to stress and biosynthesis of gamma-aminobutyric acid. In addition, VLCKD caused a relative increase in enzymes involved in the synthesis of the beta-ketoacid acetoacetate and of the ketogenic amino acid leucine. Our data support the potential of fecal metaproteomics to investigate the GM-dependent effect of KD as a therapeutic option in obese/overweight individuals and DRE patients.

粪便宏蛋白质组学作为监测生酮饮食引起的肠道微生物群功能改变的工具:一个案例研究。
宏蛋白质组学是表征肠道微生物群(GM)对饮食干预反应的生物学功能的一种有价值的方法。生酮饮食(KDs)在控制耐药癫痫(DRE)发作的严重程度和频率以及肥胖/超重个体的体重减轻管理方面非常有效。该案例研究为宏蛋白质组学在短期极低热量生酮饮食(VLCKD, 4周)之后低热量饮食(LCD)的个体中监测分类和功能性转基因特征变化的适用性提供了概念证明。在VLCKD期间观察到Akkermansia和Pseudomonadota的显著增加,并在部分重新引入碳水化合物(LCD)后逆转,这与先前的宏基因组研究结果一致。在功能方面,Akkermansia的相对增加与参与应激反应和γ -氨基丁酸生物合成的蛋白质产量增加有关。此外,VLCKD引起了参与合成β -酮酸乙酰乙酸和生酮氨基酸亮氨酸的酶的相对增加。我们的数据支持粪便宏蛋白质组学研究KD作为肥胖/超重个体和DRE患者治疗选择的转基因依赖效应的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信