High cycle fatigue performance and corresponding fracture behaviors of GH4169 studs formed by thread warm rolling process

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Yanli Lu, Liyuan Hu, Ting Li, Gang Ran, Xiaowei Yi, Yukun Sun, Zhenyang Kong, Kuangshi Yan, Rui Hu, Hong Wang
{"title":"High cycle fatigue performance and corresponding fracture behaviors of GH4169 studs formed by thread warm rolling process","authors":"Yanli Lu, Liyuan Hu, Ting Li, Gang Ran, Xiaowei Yi, Yukun Sun, Zhenyang Kong, Kuangshi Yan, Rui Hu, Hong Wang","doi":"10.1016/j.ijfatigue.2025.108808","DOIUrl":null,"url":null,"abstract":"Threaded components like bolts and studs, are prone to fatigue failures due to high stress concentration. GH4169 superalloy widely used in the aerospace field has excellent mechanical properties in high temperature environment and is ideal for high strength thread fasteners. In this study, the thread warm rolling process is developed to prepare GH4169 studs samples with enhanced fatigue performance. Firstly, the configuration of the rolling apparatus is introduced and described. Then, thread forming experiments are conducted on GH4169 matrix by use of the thread warm rolling process and traditional thread turning process respectively. The fatigue performance and mechanical properties of these formed studs are evaluated. Compared to the turning process, surface finish of thread root is further improved from R<ce:inf loc=\"post\">a</ce:inf> 0.26 to R<ce:inf loc=\"post\">a</ce:inf> 0.13, and increased microhardness distributed in the severe plastic deformation (SPD) layer are achieved for thread warm rolling process. The warm rolling process induces the SPD layer depth of approximately 80–100 μm at the thread root, significantly enhancing mechanical properties here and improving fatigue performance of overall parts. High cycle fatigue tests demonstrate that GH4169 studs formed by warm rolling process exhibit a fatigue life about 25 times greater than those formed by turning process.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"21 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.108808","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Threaded components like bolts and studs, are prone to fatigue failures due to high stress concentration. GH4169 superalloy widely used in the aerospace field has excellent mechanical properties in high temperature environment and is ideal for high strength thread fasteners. In this study, the thread warm rolling process is developed to prepare GH4169 studs samples with enhanced fatigue performance. Firstly, the configuration of the rolling apparatus is introduced and described. Then, thread forming experiments are conducted on GH4169 matrix by use of the thread warm rolling process and traditional thread turning process respectively. The fatigue performance and mechanical properties of these formed studs are evaluated. Compared to the turning process, surface finish of thread root is further improved from Ra 0.26 to Ra 0.13, and increased microhardness distributed in the severe plastic deformation (SPD) layer are achieved for thread warm rolling process. The warm rolling process induces the SPD layer depth of approximately 80–100 μm at the thread root, significantly enhancing mechanical properties here and improving fatigue performance of overall parts. High cycle fatigue tests demonstrate that GH4169 studs formed by warm rolling process exhibit a fatigue life about 25 times greater than those formed by turning process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信