Diatomic Palladium Catalyst for Enhanced Photocatalytic Water-Donating Transfer Hydrogenation

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
En Zhao, Jordi Morales-Vidal, Yue Yang, Sharon Mitchell, Yinlong Zhu, Zhiwei Hu, Jin-Ming Chen, Shu-Chih Haw, Ting-Shan Chan, Ziyi Fan, Zhu-Jun Wang, Núria López, Javier Pérez-Ramírez, Zupeng Chen
{"title":"Diatomic Palladium Catalyst for Enhanced Photocatalytic Water-Donating Transfer Hydrogenation","authors":"En Zhao, Jordi Morales-Vidal, Yue Yang, Sharon Mitchell, Yinlong Zhu, Zhiwei Hu, Jin-Ming Chen, Shu-Chih Haw, Ting-Shan Chan, Ziyi Fan, Zhu-Jun Wang, Núria López, Javier Pérez-Ramírez, Zupeng Chen","doi":"10.1021/jacs.4c15235","DOIUrl":null,"url":null,"abstract":"Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%). Combining transmission electron microscopy with standardized machine learning atom-detection methods confirms the stabilization of a substantial fraction of dimeric Pd species over carbon nitride. Density functional theory (DFT) simulations associate the outstanding performance of Pd-DAC to enhanced substrate activation in the hydrogenation path compared to Pd-SAC. The work provides criteria for DACs characterization and demonstrates a transfer hydrogenation application that is sustainable and eco-friendly over conventional hydrogenation technologies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"125 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15235","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%). Combining transmission electron microscopy with standardized machine learning atom-detection methods confirms the stabilization of a substantial fraction of dimeric Pd species over carbon nitride. Density functional theory (DFT) simulations associate the outstanding performance of Pd-DAC to enhanced substrate activation in the hydrogenation path compared to Pd-SAC. The work provides criteria for DACs characterization and demonstrates a transfer hydrogenation application that is sustainable and eco-friendly over conventional hydrogenation technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信