PICK: Predict and Mask for Semi-supervised Medical Image Segmentation

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qingjie Zeng, Zilin Lu, Yutong Xie, Yong Xia
{"title":"PICK: Predict and Mask for Semi-supervised Medical Image Segmentation","authors":"Qingjie Zeng, Zilin Lu, Yutong Xie, Yong Xia","doi":"10.1007/s11263-024-02328-9","DOIUrl":null,"url":null,"abstract":"<p>Pseudo-labeling and consistency-based co-training are established paradigms in semi-supervised learning. Pseudo-labeling focuses on selecting reliable pseudo-labels, while co-training emphasizes sub-network diversity for complementary information extraction. However, both paradigms struggle with the inevitable erroneous predictions from unlabeled data, which poses a risk to task-specific decoders and ultimately impact model performance. To address this challenge, we propose a PredICt-and-masK (PICK) model for semi-supervised medical image segmentation. PICK operates by masking and predicting pseudo-label-guided attentive regions to exploit unlabeled data. It features a shared encoder and three task-specific decoders. Specifically, PICK employs a primary decoder supervised solely by labeled data to generate pseudo-labels, identifying potential targets in unlabeled data. The model then masks these regions and reconstructs them using a masked image modeling (MIM) decoder, optimizing through a reconstruction task. To reconcile segmentation and reconstruction, an auxiliary decoder is further developed to learn from the reconstructed images, whose predictions are constrained by the primary decoder. We evaluate PICK on five medical benchmarks, including single organ/tumor segmentation, multi-organ segmentation, and domain-generalized tasks. Our results indicate that PICK outperforms state-of-the-art methods. The code is available at https://github.com/maxwell0027/PICK.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02328-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudo-labeling and consistency-based co-training are established paradigms in semi-supervised learning. Pseudo-labeling focuses on selecting reliable pseudo-labels, while co-training emphasizes sub-network diversity for complementary information extraction. However, both paradigms struggle with the inevitable erroneous predictions from unlabeled data, which poses a risk to task-specific decoders and ultimately impact model performance. To address this challenge, we propose a PredICt-and-masK (PICK) model for semi-supervised medical image segmentation. PICK operates by masking and predicting pseudo-label-guided attentive regions to exploit unlabeled data. It features a shared encoder and three task-specific decoders. Specifically, PICK employs a primary decoder supervised solely by labeled data to generate pseudo-labels, identifying potential targets in unlabeled data. The model then masks these regions and reconstructs them using a masked image modeling (MIM) decoder, optimizing through a reconstruction task. To reconcile segmentation and reconstruction, an auxiliary decoder is further developed to learn from the reconstructed images, whose predictions are constrained by the primary decoder. We evaluate PICK on five medical benchmarks, including single organ/tumor segmentation, multi-organ segmentation, and domain-generalized tasks. Our results indicate that PICK outperforms state-of-the-art methods. The code is available at https://github.com/maxwell0027/PICK.

PICK:半监督医学图像分割的预测和掩码
伪标记和基于一致性的协同训练是半监督学习中已建立的范例。伪标注侧重于选择可靠的伪标签,而协同训练侧重于子网络多样性,以获取互补信息。然而,这两种范式都与来自未标记数据的不可避免的错误预测作斗争,这给特定任务的解码器带来了风险,并最终影响了模型的性能。为了解决这一挑战,我们提出了一种用于半监督医学图像分割的预测和掩码(PICK)模型。PICK通过屏蔽和预测伪标签引导的注意区域来利用未标记的数据。它具有一个共享编码器和三个任务特定的解码器。具体来说,PICK使用一个主解码器,仅由标记数据监督来生成伪标签,识别未标记数据中的潜在目标。然后,该模型对这些区域进行掩码,并使用掩码图像建模(MIM)解码器进行重建,通过重建任务进行优化。为了协调分割和重建,进一步开发了一种辅助解码器,从重建图像中学习,其预测受主解码器的约束。我们在五个医学基准上评估PICK,包括单器官/肿瘤分割、多器官分割和领域广义任务。我们的结果表明,PICK优于最先进的方法。代码可在https://github.com/maxwell0027/PICK上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信