{"title":"PICK: Predict and Mask for Semi-supervised Medical Image Segmentation","authors":"Qingjie Zeng, Zilin Lu, Yutong Xie, Yong Xia","doi":"10.1007/s11263-024-02328-9","DOIUrl":null,"url":null,"abstract":"<p>Pseudo-labeling and consistency-based co-training are established paradigms in semi-supervised learning. Pseudo-labeling focuses on selecting reliable pseudo-labels, while co-training emphasizes sub-network diversity for complementary information extraction. However, both paradigms struggle with the inevitable erroneous predictions from unlabeled data, which poses a risk to task-specific decoders and ultimately impact model performance. To address this challenge, we propose a PredICt-and-masK (PICK) model for semi-supervised medical image segmentation. PICK operates by masking and predicting pseudo-label-guided attentive regions to exploit unlabeled data. It features a shared encoder and three task-specific decoders. Specifically, PICK employs a primary decoder supervised solely by labeled data to generate pseudo-labels, identifying potential targets in unlabeled data. The model then masks these regions and reconstructs them using a masked image modeling (MIM) decoder, optimizing through a reconstruction task. To reconcile segmentation and reconstruction, an auxiliary decoder is further developed to learn from the reconstructed images, whose predictions are constrained by the primary decoder. We evaluate PICK on five medical benchmarks, including single organ/tumor segmentation, multi-organ segmentation, and domain-generalized tasks. Our results indicate that PICK outperforms state-of-the-art methods. The code is available at https://github.com/maxwell0027/PICK.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02328-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudo-labeling and consistency-based co-training are established paradigms in semi-supervised learning. Pseudo-labeling focuses on selecting reliable pseudo-labels, while co-training emphasizes sub-network diversity for complementary information extraction. However, both paradigms struggle with the inevitable erroneous predictions from unlabeled data, which poses a risk to task-specific decoders and ultimately impact model performance. To address this challenge, we propose a PredICt-and-masK (PICK) model for semi-supervised medical image segmentation. PICK operates by masking and predicting pseudo-label-guided attentive regions to exploit unlabeled data. It features a shared encoder and three task-specific decoders. Specifically, PICK employs a primary decoder supervised solely by labeled data to generate pseudo-labels, identifying potential targets in unlabeled data. The model then masks these regions and reconstructs them using a masked image modeling (MIM) decoder, optimizing through a reconstruction task. To reconcile segmentation and reconstruction, an auxiliary decoder is further developed to learn from the reconstructed images, whose predictions are constrained by the primary decoder. We evaluate PICK on five medical benchmarks, including single organ/tumor segmentation, multi-organ segmentation, and domain-generalized tasks. Our results indicate that PICK outperforms state-of-the-art methods. The code is available at https://github.com/maxwell0027/PICK.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.