Delving Deep into Simplicity Bias for Long-Tailed Image Recognition

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiu-Shen Wei, Xuhao Sun, Yang Shen, Peng Wang
{"title":"Delving Deep into Simplicity Bias for Long-Tailed Image Recognition","authors":"Xiu-Shen Wei, Xuhao Sun, Yang Shen, Peng Wang","doi":"10.1007/s11263-024-02342-x","DOIUrl":null,"url":null,"abstract":"<p>Simplicity Bias (SB) is a phenomenon that deep neural networks tend to rely favorably on simpler predictive patterns but ignore some complex features when applied to supervised discriminative tasks. In this work, we investigate SB in long-tailed image recognition and find the tail classes suffer more severely from SB, which harms the generalization performance of such underrepresented classes. We empirically report that self-supervised learning (SSL) can mitigate SB and perform in complementary to the supervised counterpart by enriching the features extracted from tail samples and consequently taking better advantage of such rare samples. However, standard SSL methods are designed without explicitly considering the inherent data distribution in terms of classes and may not be optimal for long-tailed distributed data. To address this limitation, we propose a novel SSL method tailored to imbalanced data. It leverages SSL by triple diverse levels, <i>i.e.</i>, holistic-, partial-, and augmented-level, to enhance the learning of predictive complex patterns, which provides the potential to overcome the severe SB on tail data. Both quantitative and qualitative experimental results on five long-tailed benchmark datasets show our method can effectively mitigate SB and significantly outperform the competing state-of-the-arts.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"5 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02342-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Simplicity Bias (SB) is a phenomenon that deep neural networks tend to rely favorably on simpler predictive patterns but ignore some complex features when applied to supervised discriminative tasks. In this work, we investigate SB in long-tailed image recognition and find the tail classes suffer more severely from SB, which harms the generalization performance of such underrepresented classes. We empirically report that self-supervised learning (SSL) can mitigate SB and perform in complementary to the supervised counterpart by enriching the features extracted from tail samples and consequently taking better advantage of such rare samples. However, standard SSL methods are designed without explicitly considering the inherent data distribution in terms of classes and may not be optimal for long-tailed distributed data. To address this limitation, we propose a novel SSL method tailored to imbalanced data. It leverages SSL by triple diverse levels, i.e., holistic-, partial-, and augmented-level, to enhance the learning of predictive complex patterns, which provides the potential to overcome the severe SB on tail data. Both quantitative and qualitative experimental results on five long-tailed benchmark datasets show our method can effectively mitigate SB and significantly outperform the competing state-of-the-arts.

深入研究长尾图像识别的简单性偏差
简单性偏差(simple Bias, SB)是指深度神经网络在应用于有监督的判别任务时倾向于依赖更简单的预测模式而忽略一些复杂特征的现象。在这项工作中,我们研究了长尾图像识别中的SB,发现尾类受到SB的影响更严重,这损害了这类代表性不足的类的泛化性能。我们的实证报告表明,自监督学习(self-supervised learning, SSL)可以通过丰富从尾样本中提取的特征,从而更好地利用这些罕见的样本,从而缓解SB,并与有监督的对等物互补。然而,标准SSL方法的设计没有明确考虑类的固有数据分布,并且对于长尾分布数据可能不是最优的。为了解决这一限制,我们提出了一种针对不平衡数据的新颖SSL方法。它通过三个不同级别(即整体级别、部分级别和增强级别)利用SSL来增强对预测性复杂模式的学习,从而有可能克服尾数据上的严重SB。在五个长尾基准数据集上的定量和定性实验结果表明,我们的方法可以有效地缓解SB,并显著优于竞争的最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信