Evolution of the star formation rate surface density main sequence

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jakub Nadolny, Michał J. Michałowski, Massimiliano Parente, Martín Solar, Przemysław Nowaczyk, Oleh Ryzhov, Aleksandra Leśniewska
{"title":"Evolution of the star formation rate surface density main sequence","authors":"Jakub Nadolny, Michał J. Michałowski, Massimiliano Parente, Martín Solar, Przemysław Nowaczyk, Oleh Ryzhov, Aleksandra Leśniewska","doi":"10.1051/0004-6361/202452794","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Recent high-redshift (<i>z<i/> > 4) spatially resolved observations with the James Webb Space Telescope have shown the evolution of the star formation rate (SFR) surface density (Σ<sub>SFR<sub/>) and its main sequence in the Σ<sub>SFR<sub/> − <i>M<i/><sub>*<sub/> diagram (Σ<sub>SFR<sub/>MS). The Σ<sub>SFR<sub/>MS is already observed at cosmic morning (<i>z<i/> ∼ 7.5). The use of Σ<sub>SFR<sub/> is physically motivated because it is normalized by the area in which the star formation occurs, and this indirectly considers the gas density. The Σ<sub>SFR<sub/> − <i>M<i/><sub>*<sub/> diagram has been shown to complement the widely used (specific) SFR-<i>M<i/><sub>*<sub/>, particularly when selecting passive galaxies.<i>Aims.<i/> We establish the Σ<sub>SFR<sub/> evolution since <i>z<i/> = 12 in the framework of the L-GALAXIES2020 semi-analytical model (SAM), and we interpret recent observations.<i>Methods.<i/> We estimated Σ<sub>SFR<sub/>(–<i>M<i/><sub>*<sub/>) and the cosmic star formation rate density (CSFRD) for the simulated galaxy population and for the subsamples, which were divided into stellar mass bins in the given redshift.<i>Results.<i/> The simulated Σ<sub>SFR<sub/> decreases by ∼3.5 dex from <i>z<i/> = 12 to <i>z<i/> = 0. We show that galaxies with different stellar masses have different paths of Σ<sub>SFR<sub/> evolution. We find that Σ<sub>SFR<sub/>MS is already observed at <i>z<i/> ∼ 11. The simulated Σ<sub>SFR<sub/>MS agrees with the observed one at <i>z<i/> = 0, 1, 2, 5, and 7.5 and with individual galaxies at <i>z<i/> > 10. We show that the highest Σ<sub>SFR<sub/>MS slope of 0.709 ± 0.005 is at <i>z<i/> ∼ 3 and decreases to ∼0.085 ± 0.003 at <i>z<i/> = 0. This is mostly driven by a rapid decrease in SFR with an additional size increase for the most massive galaxies in this redshift range. This coincides with the dominance of the most massive galaxies in the CSFRD from the SAM. Observations show the same picture, in which the Σ<sub>SFR<sub/> evolutionary path depends on the stellar mass, that is, more massive galaxies have higher Σ<sub>SFR<sub/> at all redshifts. Finally, using the slope and normalization evolution, we derived the simulated Σ<sub>SFR<sub/>MS as a function of stellar mass and redshift.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452794","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Recent high-redshift (z > 4) spatially resolved observations with the James Webb Space Telescope have shown the evolution of the star formation rate (SFR) surface density (ΣSFR) and its main sequence in the ΣSFR − M* diagram (ΣSFRMS). The ΣSFRMS is already observed at cosmic morning (z ∼ 7.5). The use of ΣSFR is physically motivated because it is normalized by the area in which the star formation occurs, and this indirectly considers the gas density. The ΣSFR − M* diagram has been shown to complement the widely used (specific) SFR-M*, particularly when selecting passive galaxies.Aims. We establish the ΣSFR evolution since z = 12 in the framework of the L-GALAXIES2020 semi-analytical model (SAM), and we interpret recent observations.Methods. We estimated ΣSFR(–M*) and the cosmic star formation rate density (CSFRD) for the simulated galaxy population and for the subsamples, which were divided into stellar mass bins in the given redshift.Results. The simulated ΣSFR decreases by ∼3.5 dex from z = 12 to z = 0. We show that galaxies with different stellar masses have different paths of ΣSFR evolution. We find that ΣSFRMS is already observed at z ∼ 11. The simulated ΣSFRMS agrees with the observed one at z = 0, 1, 2, 5, and 7.5 and with individual galaxies at z > 10. We show that the highest ΣSFRMS slope of 0.709 ± 0.005 is at z ∼ 3 and decreases to ∼0.085 ± 0.003 at z = 0. This is mostly driven by a rapid decrease in SFR with an additional size increase for the most massive galaxies in this redshift range. This coincides with the dominance of the most massive galaxies in the CSFRD from the SAM. Observations show the same picture, in which the ΣSFR evolutionary path depends on the stellar mass, that is, more massive galaxies have higher ΣSFR at all redshifts. Finally, using the slope and normalization evolution, we derived the simulated ΣSFRMS as a function of stellar mass and redshift.
恒星形成速率、表面密度主序的演化
上下文。最近用詹姆斯韦伯太空望远镜进行的高红移(z bbbb4)空间分辨观测显示了恒星形成速率(SFR)表面密度(ΣSFR)及其在ΣSFR−M*图(ΣSFRMS)中的主序列的演变。ΣSFRMS已经在宇宙早晨(z ~ 7.5)被观测到。使用ΣSFR是出于物理动机,因为它是由恒星形成的区域标准化的,这间接考虑了气体密度。ΣSFR−M*图已被证明是对广泛使用的(特定的)SFR-M*的补充,特别是在选择被动星系时。我们在L-GALAXIES2020半解析模型(SAM)的框架内建立了z = 12以来的ΣSFR演化,并对最近的观测结果进行了解释。我们估计了模拟星系群和子样本的ΣSFR(-M *)和宇宙恒星形成速率密度(CSFRD),这些子样本在给定的红移中被划分为恒星质量桶。模拟的ΣSFR从z = 12到z = 0降低了~ 3.5个指数。我们表明不同恒星质量的星系有不同的ΣSFR演化路径。我们发现ΣSFRMS在z ~ 11已经被观测到。模拟的ΣSFRMS与观测到的z = 0、1、2、5和7.5以及z = bbb10的单个星系一致。我们发现,在z ~ 3处,最高的ΣSFRMS斜率为0.709±0.005,在z = 0处,斜率降至~ 0.085±0.003。这主要是由于在这个红移范围内的大多数大质量星系的SFR的快速下降和额外的尺寸增加。这与CSFRD中来自SAM的大质量星系的优势相吻合。观测也显示了同样的情况,ΣSFR的演化路径取决于恒星的质量,也就是说,质量越大的星系在所有红移上的ΣSFR都越高。最后,利用斜率和归一化演化,我们推导了模拟的ΣSFRMS作为恒星质量和红移的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信