Shiquan Liu, Liang An, Hui Li, Kaiyang Xia, Mao Peng, Zhongwei Li, Bing-Feng Ju, Yuan-Liu Chen
{"title":"Micro-zone cutting temperature measurement using a nitrogen-extracted boron and hydrogen co-doped diamond tool for ultra-precision machining","authors":"Shiquan Liu, Liang An, Hui Li, Kaiyang Xia, Mao Peng, Zhongwei Li, Bing-Feng Ju, Yuan-Liu Chen","doi":"10.1016/j.ijmachtools.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate measurement of the cutting temperature is essential for monitoring the cutting state and ensuring a reliable cutting process. In ultra-precision machining, directly measuring the temperature in the micro/nano-scale cutting zones poses substantial challenges. In this study, a nitrogen-extracted boron and hydrogen co-doped diamond tool was proposed. By transitioning into a p-type semiconductor, the diamond tool manifests heat-sensitive characteristics, enabling to sense the cutting temperature. The inherent orientation-dependent behaviour of boron doping in diamond tools, particularly notable in the (100) orientation, was suppressed through removal of nitrogen from the lattice. The lattice distortions induced by heavy boron doping after nitrogen removal in (111)-oriented diamond were significantly mitigated by co-doping with boron and hydrogen. This approach enhanced the crystal quality and semiconductor electrical properties of the diamond tools, which are crucial for accurate measurement of the cutting temperature. Compared with boron-doped diamond tools, the nitrogen-extracted boron and hydrogen co-doped diamond tool exhibited superior sensitivity and an extended range of temperature sensing. The diamond tool was employed for cutting temperature measurements during the micro-scale depth-graded turning of copper and titanium alloys, as well as the nano-scale progressive scratching of silicon. Experiments demonstrated the tool's capabilities for in-process monitoring of cutting states in micro zones, along with high-sensitivity detection of micro/nano-scale surface morphologies and characteristics during ultra-precision machining. The innovation of temperature-sensing diamond tools not only achieves accurate measurement of temperature in micro/nano-scale cutting zones during ultra-precision machining, but also provides an effective approach for in-process state characterisation for advanced manufacturing.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"205 ","pages":"Article 104244"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524001305","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate measurement of the cutting temperature is essential for monitoring the cutting state and ensuring a reliable cutting process. In ultra-precision machining, directly measuring the temperature in the micro/nano-scale cutting zones poses substantial challenges. In this study, a nitrogen-extracted boron and hydrogen co-doped diamond tool was proposed. By transitioning into a p-type semiconductor, the diamond tool manifests heat-sensitive characteristics, enabling to sense the cutting temperature. The inherent orientation-dependent behaviour of boron doping in diamond tools, particularly notable in the (100) orientation, was suppressed through removal of nitrogen from the lattice. The lattice distortions induced by heavy boron doping after nitrogen removal in (111)-oriented diamond were significantly mitigated by co-doping with boron and hydrogen. This approach enhanced the crystal quality and semiconductor electrical properties of the diamond tools, which are crucial for accurate measurement of the cutting temperature. Compared with boron-doped diamond tools, the nitrogen-extracted boron and hydrogen co-doped diamond tool exhibited superior sensitivity and an extended range of temperature sensing. The diamond tool was employed for cutting temperature measurements during the micro-scale depth-graded turning of copper and titanium alloys, as well as the nano-scale progressive scratching of silicon. Experiments demonstrated the tool's capabilities for in-process monitoring of cutting states in micro zones, along with high-sensitivity detection of micro/nano-scale surface morphologies and characteristics during ultra-precision machining. The innovation of temperature-sensing diamond tools not only achieves accurate measurement of temperature in micro/nano-scale cutting zones during ultra-precision machining, but also provides an effective approach for in-process state characterisation for advanced manufacturing.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).