A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

IF 9.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jie Zha, Qinwei Chen, Wei Zhang, Hongmei Jing, Jingjing Ye, Huanhuan Liu, Haifeng Yu, Shuhua Yi, Caixia Li, Zhong Zheng, Wei Xu, Zhifeng Li, Zhijuan Lin, Lingyan Ping, Xiaohua He, Liling Zhang, Ying Xie, Feili Chen, Xiuhua Sun, Liping Su, Huilai Zhang, Haiyan Yang, Weili Zhao, Lugui Qiu, Zhiming Li, Yuqin Song, Bing Xu
{"title":"A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.","authors":"Jie Zha, Qinwei Chen, Wei Zhang, Hongmei Jing, Jingjing Ye, Huanhuan Liu, Haifeng Yu, Shuhua Yi, Caixia Li, Zhong Zheng, Wei Xu, Zhifeng Li, Zhijuan Lin, Lingyan Ping, Xiaohua He, Liling Zhang, Ying Xie, Feili Chen, Xiuhua Sun, Liping Su, Huilai Zhang, Haiyan Yang, Weili Zhao, Lugui Qiu, Zhiming Li, Yuqin Song, Bing Xu","doi":"10.1186/s40364-024-00716-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.</p><p><strong>Methods: </strong>A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio). XGBoost was utilized to construct the POD24-predicting model, which was internally validated in the validation set and externally validated in the GALLIUM cohort. Key predictors of POD24 included lymphocyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH) > ULN, low hemoglobin (Hb), elevated beta-2 microglobulin (β2-MG), maximum standardized uptake value (SUVmax), and lymph node involvement. The FLIPI-C model assigned 2 points to LMR and 1 point to each of the other variables.</p><p><strong>Results: </strong>The FLIPI-C model demonstrated superior accuracy (AUC) for predicting POD24 and 3-year overall survival (OS) in both the internal (AUC POD24: 0.764, OS: 0.700) and external validation cohorts (AUC POD24: 0.703, OS: 0.653), compared to existing models (FLIPI, FLIPI-2, PRIMA-PI, FLEX). Decision curve analysis confirmed the superior net benefits of FLIPI-C.</p><p><strong>Conclusions: </strong>Developed using a machine learning approach, the FLIPI-C model offers superior predictive accuracy and utilizes simple, widely available markers. It holds promise for informing treatment decisions and prognostic assessments in clinical practice for FL patients at high risk of POD24.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"2"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-024-00716-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio). XGBoost was utilized to construct the POD24-predicting model, which was internally validated in the validation set and externally validated in the GALLIUM cohort. Key predictors of POD24 included lymphocyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH) > ULN, low hemoglobin (Hb), elevated beta-2 microglobulin (β2-MG), maximum standardized uptake value (SUVmax), and lymph node involvement. The FLIPI-C model assigned 2 points to LMR and 1 point to each of the other variables.

Results: The FLIPI-C model demonstrated superior accuracy (AUC) for predicting POD24 and 3-year overall survival (OS) in both the internal (AUC POD24: 0.764, OS: 0.700) and external validation cohorts (AUC POD24: 0.703, OS: 0.653), compared to existing models (FLIPI, FLIPI-2, PRIMA-PI, FLEX). Decision curve analysis confirmed the superior net benefits of FLIPI-C.

Conclusions: Developed using a machine learning approach, the FLIPI-C model offers superior predictive accuracy and utilizes simple, widely available markers. It holds promise for informing treatment decisions and prognostic assessments in clinical practice for FL patients at high risk of POD24.

基于机器学习的预测滤泡性淋巴瘤POD24的模型:中国滤泡性淋巴瘤研讨会的研究。
背景:滤泡性淋巴瘤(FL)患者24个月内的疾病进展(POD24)显著影响总生存期(OS)。本研究旨在开发一个强大的预测模型FLIPI-C,使用机器学习方法来识别有高风险POD24的FL患者。方法:来自全国17个中心的1938例FL患者(FL1-3a)随机分为训练组和内部验证组(2:1比例)。利用XGBoost构建pod24预测模型,在验证集中进行内部验证,在GALLIUM队列中进行外部验证。POD24的主要预测因子包括淋巴细胞与单核细胞比率(LMR)、乳酸脱氢酶(LDH) > ULN、低血红蛋白(Hb)、β -2微球蛋白(β2-MG)升高、最大标准化摄取值(SUVmax)和淋巴结累及。FLIPI-C模型为LMR分配2个点,为其他变量分配1个点。结果:与现有模型(FLIPI, FLIPI-2, PRIMA-PI, FLEX)相比,FLIPI- c模型在内部(AUC POD24: 0.764, OS: 0.700)和外部验证队列(AUC POD24: 0.703, OS: 0.653)中预测POD24和3年总生存期(OS)的准确性(AUC)均优于现有模型(FLIPI, FLIPI-2)。决策曲线分析证实了FLIPI-C的优越净效益。结论:使用机器学习方法开发的FLIPI-C模型具有卓越的预测准确性,并使用简单,广泛使用的标记。它有望在临床实践中为高风险的FL患者提供治疗决策和预后评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarker Research
Biomarker Research Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍: Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信