{"title":"Explainable Machine Learning to Predict Treatment Response in Advanced Non-Small Cell Lung Cancer.","authors":"Vinayak S Ahluwalia, Ravi B Parikh","doi":"10.1200/CCI-24-00157","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.</p><p><strong>Methods: </strong>Using a real-world, nationwide electronic health record-derived deidentified database of 38,048 patients with advanced NSCLC, we trained binary prediction algorithms to predict likelihood of 12-month progression-free survival (PFS; 12-month PFS) and 12-month overall survival (OS; 12-month OS) from initiation of first-line therapy. We evaluated the algorithms by calculating the AUC on the test set. We plotted Kaplan-Meier curves and fit Cox survival models comparing survival between patients who were classified as low-risk (LR) for 12-month disease progression or 12-month mortality versus those classified as high-risk.</p><p><strong>Results: </strong>The ML algorithms achieved an AUC of 0.701 (95% CI, 0.689 to 0.714) and 0.718 (95% CI, 0.707 to 0.730) for 12-month PFS and 12-month OS, respectively. Patients in the LR group had lower 12-month disease progression (hazard ratio [HR], 0.47 [95% CI, 0.45 to 0.50]; <i>P</i> < .001) and 12-month all-cause mortality (HR, 0.31 [95% CI, 0.29 to 0.34]; <i>P</i> < .0001) compared with the high-risk group. Patients deemed LR for disease progression and mortality on IO monotherapy were less likely to progress (HR, 0.53 [95% CI, 0.46 to 0.61]; <i>P</i> < .0001) or die (HR, 0.30 [95% CI, 0.24 to 0.37]; <i>P</i> < .001) compared with the high-risk group.</p><p><strong>Conclusion: </strong>An ML algorithm can more accurately predict response to first-line therapy, including IO monotherapy, in patients with advanced NSCLC, compared with PD-L1 alone. ML may better aid clinical decision making in oncology than a single biomarker.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400157"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706357/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.
Methods: Using a real-world, nationwide electronic health record-derived deidentified database of 38,048 patients with advanced NSCLC, we trained binary prediction algorithms to predict likelihood of 12-month progression-free survival (PFS; 12-month PFS) and 12-month overall survival (OS; 12-month OS) from initiation of first-line therapy. We evaluated the algorithms by calculating the AUC on the test set. We plotted Kaplan-Meier curves and fit Cox survival models comparing survival between patients who were classified as low-risk (LR) for 12-month disease progression or 12-month mortality versus those classified as high-risk.
Results: The ML algorithms achieved an AUC of 0.701 (95% CI, 0.689 to 0.714) and 0.718 (95% CI, 0.707 to 0.730) for 12-month PFS and 12-month OS, respectively. Patients in the LR group had lower 12-month disease progression (hazard ratio [HR], 0.47 [95% CI, 0.45 to 0.50]; P < .001) and 12-month all-cause mortality (HR, 0.31 [95% CI, 0.29 to 0.34]; P < .0001) compared with the high-risk group. Patients deemed LR for disease progression and mortality on IO monotherapy were less likely to progress (HR, 0.53 [95% CI, 0.46 to 0.61]; P < .0001) or die (HR, 0.30 [95% CI, 0.24 to 0.37]; P < .001) compared with the high-risk group.
Conclusion: An ML algorithm can more accurately predict response to first-line therapy, including IO monotherapy, in patients with advanced NSCLC, compared with PD-L1 alone. ML may better aid clinical decision making in oncology than a single biomarker.