Luisa Brock, Lina Benzien, Sandra Lange, Maja Huehns, Alexandra Runge, Catrin Roolf, Anett Sekora, Gudrun Knuebel, Hugo Murua Escobar, Christian Junghanss, Anna Richter
{"title":"KMT2A degradation is observed in decitabine-responsive acute lymphoblastic leukemia cells.","authors":"Luisa Brock, Lina Benzien, Sandra Lange, Maja Huehns, Alexandra Runge, Catrin Roolf, Anett Sekora, Gudrun Knuebel, Hugo Murua Escobar, Christian Junghanss, Anna Richter","doi":"10.1002/1878-0261.13792","DOIUrl":null,"url":null,"abstract":"<p><p>Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter. In acute lymphoblastic leukemia (ALL) cell lines, and xenograft models, we observed increased DNMT1, and KMT2A expression in response to decitabine-induced demethylation. Strikingly, KMT2A protein expression was diminished in all cell lines that experienced DNMT1 degradation. Moreover, only cells with reduced KMT2A protein levels showed biological effects following decitabine treatment. KMT2A wild-type, and rearranged cells were locked in G2 and G1 cell cycle phases, respectively, likely due to p27/p16 activation. Primary sample gene expression profiling confirmed different patterns between KMT2A wild-type, and translocated cells. This newly discovered decitabine mode of action via KMT2A degradation evokes anti-leukemic activity in adult ALL cells, and can act synergistically with menin inhibition. Following the successful clinical implementation of decitabine for acute myeloid leukemia, the drug should be considered a potential promising addition to the therapeutic portfolio for ALL as well.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter. In acute lymphoblastic leukemia (ALL) cell lines, and xenograft models, we observed increased DNMT1, and KMT2A expression in response to decitabine-induced demethylation. Strikingly, KMT2A protein expression was diminished in all cell lines that experienced DNMT1 degradation. Moreover, only cells with reduced KMT2A protein levels showed biological effects following decitabine treatment. KMT2A wild-type, and rearranged cells were locked in G2 and G1 cell cycle phases, respectively, likely due to p27/p16 activation. Primary sample gene expression profiling confirmed different patterns between KMT2A wild-type, and translocated cells. This newly discovered decitabine mode of action via KMT2A degradation evokes anti-leukemic activity in adult ALL cells, and can act synergistically with menin inhibition. Following the successful clinical implementation of decitabine for acute myeloid leukemia, the drug should be considered a potential promising addition to the therapeutic portfolio for ALL as well.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.