A pipeline for harmonising NHS Scotland laboratory data to enable national-level analyses.

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chuang Gao, Shahzad Mumtaz, Sophie McCall, Katherine O'Sullivan, Mark McGilchrist, Daniel R Morales, Christopher Hall, Katie Wilde, Charlie Mayor, Pamela Linksted, Kathy Harrison, Christian Cole, Emily Jefferson
{"title":"A pipeline for harmonising NHS Scotland laboratory data to enable national-level analyses.","authors":"Chuang Gao, Shahzad Mumtaz, Sophie McCall, Katherine O'Sullivan, Mark McGilchrist, Daniel R Morales, Christopher Hall, Katie Wilde, Charlie Mayor, Pamela Linksted, Kathy Harrison, Christian Cole, Emily Jefferson","doi":"10.1016/j.jbi.2024.104771","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Medical laboratory data together with prescribing and hospitalisation records are three of the most used electronic health records (EHRs) for data-driven health research. In Scotland, hospitalisation, prescribing and the death register data are available nationally whereas laboratory data is captured, stored and reported from local health board systems with significant heterogeneity. For researchers or other users of this regionally curated data, working on laboratory datasets across regional cohorts requires effort and time. As part of this study, the Scottish Safe Haven Network have developed an open-source software pipeline to generate a harmonised laboratory dataset.</p><p><strong>Methods: </strong>We obtained sample laboratory data from the four regional Safe Havens in Scotland covering people within the SHARE consented cohort. We compared the variables collected by each regional Safe Haven and mapped these to 11 FHIR and 2 Scottish-specific standardised terms (i.e., one to indicate the regional health board and a second to describe the source clinical code description) RESULTS: We compared the laboratory data and found that 180 test codes covered 98.7 % of test records performed across Scotland. Focusing on the 180 test codes, we developed a set of transformations to convert test results captured in different units to the same unit. We included both Read Codes and SNOMED CT to encode the tests within the pipeline.</p><p><strong>Conclusion: </strong>We validated our harmonisation pipeline by comparing the results across the different regional datasets. The pipeline can be reused by researchers and/or Safe Havens to generate clean, harmonised laboratory data at a national level with minimal effort.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104771"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2024.104771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Medical laboratory data together with prescribing and hospitalisation records are three of the most used electronic health records (EHRs) for data-driven health research. In Scotland, hospitalisation, prescribing and the death register data are available nationally whereas laboratory data is captured, stored and reported from local health board systems with significant heterogeneity. For researchers or other users of this regionally curated data, working on laboratory datasets across regional cohorts requires effort and time. As part of this study, the Scottish Safe Haven Network have developed an open-source software pipeline to generate a harmonised laboratory dataset.

Methods: We obtained sample laboratory data from the four regional Safe Havens in Scotland covering people within the SHARE consented cohort. We compared the variables collected by each regional Safe Haven and mapped these to 11 FHIR and 2 Scottish-specific standardised terms (i.e., one to indicate the regional health board and a second to describe the source clinical code description) RESULTS: We compared the laboratory data and found that 180 test codes covered 98.7 % of test records performed across Scotland. Focusing on the 180 test codes, we developed a set of transformations to convert test results captured in different units to the same unit. We included both Read Codes and SNOMED CT to encode the tests within the pipeline.

Conclusion: We validated our harmonisation pipeline by comparing the results across the different regional datasets. The pipeline can be reused by researchers and/or Safe Havens to generate clean, harmonised laboratory data at a national level with minimal effort.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信