Identification of cancer-associated fibroblast subtypes and prognostic model development in breast cancer: role of the RUNX1/SDC1 axis in promoting invasion and metastasis.

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Yunhao Wu, Nu Li, Jin Shang, Jiazi Jiang, Xiaoliang Liu
{"title":"Identification of cancer-associated fibroblast subtypes and prognostic model development in breast cancer: role of the RUNX1/SDC1 axis in promoting invasion and metastasis.","authors":"Yunhao Wu, Nu Li, Jin Shang, Jiazi Jiang, Xiaoliang Liu","doi":"10.1007/s10565-024-09950-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis. RUNX1 transcriptionally upregulates SDC1, which facilitates extracellular matrix remodeling and promotes tumor cell migration. This finding highlights the vital contribution of CAFs to the tumor microenvironment and provides new potential targets for therapeutic intervention. The predictive model showcased remarkable precision in anticipating patient outcomes and could guide personalized treatment strategies.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"21"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09950-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis. RUNX1 transcriptionally upregulates SDC1, which facilitates extracellular matrix remodeling and promotes tumor cell migration. This finding highlights the vital contribution of CAFs to the tumor microenvironment and provides new potential targets for therapeutic intervention. The predictive model showcased remarkable precision in anticipating patient outcomes and could guide personalized treatment strategies.

乳腺癌中癌症相关成纤维细胞亚型的鉴定和预后模型的发展:RUNX1/SDC1轴在促进侵袭和转移中的作用
在这项研究中,我们确定了癌症相关成纤维细胞(CAF)分子亚型,并建立了基于CAF的乳腺癌(BRCA)预后模型。利用单细胞RNA测序发现了癌症相关成纤维细胞(CAFs)的异质性及其在BRCA进展中的重要作用。值得注意的是,我们发现RUNX1/SDC1轴增强BRCA细胞的侵袭和转移。RUNX1转录上调SDC1,促进细胞外基质重塑,促进肿瘤细胞迁移。这一发现强调了CAFs对肿瘤微环境的重要贡献,并为治疗干预提供了新的潜在靶点。该预测模型在预测患者预后方面具有显著的准确性,可以指导个性化的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信