Structural dynamics of a designed peptide pore under an external electric field

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ai Niitsu , Jaewoon Jung , Yuji Sugita
{"title":"Structural dynamics of a designed peptide pore under an external electric field","authors":"Ai Niitsu ,&nbsp;Jaewoon Jung ,&nbsp;Yuji Sugita","doi":"10.1016/j.bpc.2024.107380","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data. In this study, we implemented a uniform external electric field function in the GENESIS MD simulation package to investigate the conformational dynamics of de novo-designed peptide pores. Our simulations and single-channel current recording experiments demonstrate that both charged amino acid residues in the N-terminal sequence of the peptide and the membrane potential are crucial for the structural stability and dynamics of the peptide pores. This suggests that MD simulations with an external electric field enable more accurate screening of designed proteins functioning under membrane potentials, which will ultimately contribute to a deeper understanding of voltage-sensitive membrane proteins from a bottom-up synthetic biology perspective.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107380"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224002096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data. In this study, we implemented a uniform external electric field function in the GENESIS MD simulation package to investigate the conformational dynamics of de novo-designed peptide pores. Our simulations and single-channel current recording experiments demonstrate that both charged amino acid residues in the N-terminal sequence of the peptide and the membrane potential are crucial for the structural stability and dynamics of the peptide pores. This suggests that MD simulations with an external electric field enable more accurate screening of designed proteins functioning under membrane potentials, which will ultimately contribute to a deeper understanding of voltage-sensitive membrane proteins from a bottom-up synthetic biology perspective.

Abstract Image

外电场下设计肽孔的结构动力学。
膜电位在生物信号传导和电压敏感膜蛋白维持体内平衡中起着至关重要的作用。结合膜电位的分子动力学(MD)模拟已被广泛用于研究离子通道和蛋白质孔隙的结构和功能。它们还有助于设计和表征人工离子通道和孔,通过预测模型和实验数据的比较,指导进一步的氨基酸序列优化。在这项研究中,我们在GENESIS MD模拟包中实现了一个均匀的外电场函数,以研究新设计的肽孔的构象动力学。我们的模拟和单通道电流记录实验表明,肽n端序列的带电氨基酸残基和膜电位对肽孔的结构稳定性和动力学至关重要。这表明外电场的MD模拟可以更准确地筛选在膜电位下起作用的设计蛋白,这将最终有助于从自下而上的合成生物学角度更深入地了解电压敏感膜蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信