{"title":"GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.","authors":"Tongjun Xiang, Huibao Feng, Xin-Hui Xing, Chong Zhang","doi":"10.1186/s12859-024-06012-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.</p><p><strong>Results: </strong>We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms. GLiDe incorporates a robust quality control framework, rooted in prior experimental knowledge, ensuring the accurate identification of off-target hits. It boasts an extensive built-in database, encompassing 1,397 common prokaryotic species as a comprehensive design resource. It also provides the capability to design sgRNAs for newly discovered organisms by accepting uploaded design resource. We further demonstrated that GLiDe exhibits enhanced precision in identifying off-target binding sites for the CRISPRi system.</p><p><strong>Conclusions: </strong>We present a web server that allows the construction of genome-scale CRISPRi sgRNA libraries for prokaryotes. It mitigates off-target effects through a robust quality control framework, leveraging prior experimental knowledge within an end-to-end, user-friendly pipeline.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"1"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06012-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.
Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms. GLiDe incorporates a robust quality control framework, rooted in prior experimental knowledge, ensuring the accurate identification of off-target hits. It boasts an extensive built-in database, encompassing 1,397 common prokaryotic species as a comprehensive design resource. It also provides the capability to design sgRNAs for newly discovered organisms by accepting uploaded design resource. We further demonstrated that GLiDe exhibits enhanced precision in identifying off-target binding sites for the CRISPRi system.
Conclusions: We present a web server that allows the construction of genome-scale CRISPRi sgRNA libraries for prokaryotes. It mitigates off-target effects through a robust quality control framework, leveraging prior experimental knowledge within an end-to-end, user-friendly pipeline.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.