Analytic formulas for quantum discord of special families of N-qubit states

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jianming Zhou, Xiaoli Hu, Honglian Zhang, Naihuan Jing
{"title":"Analytic formulas for quantum discord of special families of N-qubit states","authors":"Jianming Zhou,&nbsp;Xiaoli Hu,&nbsp;Honglian Zhang,&nbsp;Naihuan Jing","doi":"10.1007/s11128-024-04625-1","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum discord, a key indicator of nonclassical correlations in bipartite systems, has been recently extended to multipartite scenarios [Phys. Rev. Lett. 2020, 124:110401]. We present exact analytic formulas for the quantum discord of special families of N-qubit states, including generalized class of GHZ states. Our formulations span 2, 3, 4<i>n</i>, <span>\\(4n+1\\)</span>, <span>\\(4n+2\\)</span>, and <span>\\(4n+3\\)</span>-qubit configurations where <span>\\(n\\in 1, 2, \\ldots \\)</span>, which refine the assessment of quantum correlations and provide an analytical tool in quantum computation. Moreover, we uncover a “discord freezing” in even-qubit systems under phase flip decoherence which provides a means for preserving quantum coherence in environmental perturbations.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04625-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum discord, a key indicator of nonclassical correlations in bipartite systems, has been recently extended to multipartite scenarios [Phys. Rev. Lett. 2020, 124:110401]. We present exact analytic formulas for the quantum discord of special families of N-qubit states, including generalized class of GHZ states. Our formulations span 2, 3, 4n, \(4n+1\), \(4n+2\), and \(4n+3\)-qubit configurations where \(n\in 1, 2, \ldots \), which refine the assessment of quantum correlations and provide an analytical tool in quantum computation. Moreover, we uncover a “discord freezing” in even-qubit systems under phase flip decoherence which provides a means for preserving quantum coherence in environmental perturbations.

n -量子位态特殊族的量子不谐解析公式
量子不和谐是二部系统中非经典相关性的关键指标,最近已扩展到多部场景[物理学]。[j].中国农业科学,2002,24(4):391 - 391。我们给出了n -量子比特态的特殊族,包括广义类GHZ态的量子不谐的精确解析公式。我们的公式涵盖2,3,4n, \(4n+1\), \(4n+2\)和\(4n+3\) -量子比特配置,其中\(n\in 1, 2, \ldots \)改进了量子相关性的评估,并提供了量子计算中的分析工具。此外,我们发现了相位翻转退相干下的偶量子比特系统中的“不和谐冻结”,这为在环境扰动中保持量子相干性提供了一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信