{"title":"A Thermomechanical Eulerian Formulation of a Size-Dependent Elastic-Inelastic Cosserat Continuum","authors":"M. B. Rubin","doi":"10.1007/s10659-024-10105-5","DOIUrl":null,"url":null,"abstract":"<div><p>A thermodynamically consistent theory for finite deformation size-dependent elastic-inelastic response of a Cosserat material with a deformable director triad <span>\\({\\mathbf{d}}_{i}\\)</span> and a single absolute temperature <span>\\(\\theta \\)</span> has been developed by the direct approach. A unique feature of the proposed theory is the Eulerian formulation of constitutive equations, which do not depend on arbitrariness of reference or intermediate configurations or definitions of total and plastic deformation measures. Inelasticity is modeled by an inelastic rate tensor in evolution equations for microstructural vectors. These microstructural vectors model elastic deformations and orientation changes of material anisotropy. General hyperelastic anisotropic constitutive equations are proposed with simple forms in terms of derivatives of the Helmholtz free energy, which depends on elastic deformation variables that include elastic deformations of the directors relative to the microstructural vectors. An important feature of the model is that the gradients of the elastic director deformations in the balances of director momentum control size dependence and are active for all loadings. Analytical solutions of the small deformation equations for simple shear are obtained for elastic response and strain-controlled cyclic loading of an elastic-viscoplastic material.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10105-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A thermodynamically consistent theory for finite deformation size-dependent elastic-inelastic response of a Cosserat material with a deformable director triad \({\mathbf{d}}_{i}\) and a single absolute temperature \(\theta \) has been developed by the direct approach. A unique feature of the proposed theory is the Eulerian formulation of constitutive equations, which do not depend on arbitrariness of reference or intermediate configurations or definitions of total and plastic deformation measures. Inelasticity is modeled by an inelastic rate tensor in evolution equations for microstructural vectors. These microstructural vectors model elastic deformations and orientation changes of material anisotropy. General hyperelastic anisotropic constitutive equations are proposed with simple forms in terms of derivatives of the Helmholtz free energy, which depends on elastic deformation variables that include elastic deformations of the directors relative to the microstructural vectors. An important feature of the model is that the gradients of the elastic director deformations in the balances of director momentum control size dependence and are active for all loadings. Analytical solutions of the small deformation equations for simple shear are obtained for elastic response and strain-controlled cyclic loading of an elastic-viscoplastic material.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.