A self-calibration algorithm for soil moisture sensors using deep learning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Diego Alberto Aranda Britez, Alejandro Tapia, Pablo Millán Gata
{"title":"A self-calibration algorithm for soil moisture sensors using deep learning","authors":"Diego Alberto Aranda Britez,&nbsp;Alejandro Tapia,&nbsp;Pablo Millán Gata","doi":"10.1007/s10489-024-05921-0","DOIUrl":null,"url":null,"abstract":"<p>In the current era of smart agriculture, accurately measuring soil moisture has become crucial for optimising irrigation systems, significantly improving water use efficiency and crop yields. However, existing soil moisture sensor technologies often suffer from accuracy issues, leading to inefficient irrigation practices. The calibration of these sensors is limited by conventional methods that rely on extensive ground reference data, making the process both costly and impractical. This study introduces an innovative self-calibration method for soil moisture sensors using deep learning. The proposed method focuses on a novel strategy requiring only two characteristic points for calibration: saturation and field capacity. Deep learning algorithms enable effective and accurate in-situ self-calibration of sensors. This method was tested using a large dataset of simulated erroneous sensor readings generated with simulation software. The results demonstrate that the method significantly improves soil moisture measurement accuracy, with 84.83% of sensors showing improvement, offering a more agile and cost-effective implementation compared to traditional approaches. This advance represents a significant step towards more efficient and sustainable agriculture, offering farmers a valuable tool for optimal water and crop management, while highlighting the potential of deep learning in solving complex engineering challenges.</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05921-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the current era of smart agriculture, accurately measuring soil moisture has become crucial for optimising irrigation systems, significantly improving water use efficiency and crop yields. However, existing soil moisture sensor technologies often suffer from accuracy issues, leading to inefficient irrigation practices. The calibration of these sensors is limited by conventional methods that rely on extensive ground reference data, making the process both costly and impractical. This study introduces an innovative self-calibration method for soil moisture sensors using deep learning. The proposed method focuses on a novel strategy requiring only two characteristic points for calibration: saturation and field capacity. Deep learning algorithms enable effective and accurate in-situ self-calibration of sensors. This method was tested using a large dataset of simulated erroneous sensor readings generated with simulation software. The results demonstrate that the method significantly improves soil moisture measurement accuracy, with 84.83% of sensors showing improvement, offering a more agile and cost-effective implementation compared to traditional approaches. This advance represents a significant step towards more efficient and sustainable agriculture, offering farmers a valuable tool for optimal water and crop management, while highlighting the potential of deep learning in solving complex engineering challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信