Prediction of Pt, Ir, Ru, and Rh complexes light absorption in the therapeutic window for phototherapy using machine learning

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
V. Vigna, T. F. G. G. Cova, A. A. C. C. Pais, E. Sicilia
{"title":"Prediction of Pt, Ir, Ru, and Rh complexes light absorption in the therapeutic window for phototherapy using machine learning","authors":"V. Vigna,&nbsp;T. F. G. G. Cova,&nbsp;A. A. C. C. Pais,&nbsp;E. Sicilia","doi":"10.1186/s13321-024-00939-5","DOIUrl":null,"url":null,"abstract":"<div><p>Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600–850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs. By compiling a dataset of 9775 complexes from the Reaxys database, we trained six classification models, including random forests, support vector machines, and neural networks, utilizing various molecular descriptors. Our findings indicate that the Extreme Gradient Boosting Classifier (XGBC) paired with AtomPairs2D descriptors delivers the highest predictive accuracy and robustness. This ML-based method significantly accelerates the identification of suitable compounds, providing a valuable tool for the early-stage design and development of phototherapy drugs. The method also allows to change relevant structural characteristics of a base molecule using information from the supervised approach.</p><p><b>Scientific Contribution:</b> The proposed machine learning (ML) approach predicts the ability of transition metal-based complexes to absorb light in the UV–vis therapeutic window, a key trait for phototherapeutic agents. While ML models have been used to predict UV–vis properties of organic molecules, applying this to metal complexes is novel. The model is efficient, fast, and resource-light, using decision tree-based algorithms that provide interpretable results. This interpretability helps to understand classification rules and facilitates targeted structural modifications to convert inactive complexes into potentially active ones.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00939-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00939-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600–850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs. By compiling a dataset of 9775 complexes from the Reaxys database, we trained six classification models, including random forests, support vector machines, and neural networks, utilizing various molecular descriptors. Our findings indicate that the Extreme Gradient Boosting Classifier (XGBC) paired with AtomPairs2D descriptors delivers the highest predictive accuracy and robustness. This ML-based method significantly accelerates the identification of suitable compounds, providing a valuable tool for the early-stage design and development of phototherapy drugs. The method also allows to change relevant structural characteristics of a base molecule using information from the supervised approach.

Scientific Contribution: The proposed machine learning (ML) approach predicts the ability of transition metal-based complexes to absorb light in the UV–vis therapeutic window, a key trait for phototherapeutic agents. While ML models have been used to predict UV–vis properties of organic molecules, applying this to metal complexes is novel. The model is efficient, fast, and resource-light, using decision tree-based algorithms that provide interpretable results. This interpretability helps to understand classification rules and facilitates targeted structural modifications to convert inactive complexes into potentially active ones.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信