{"title":"Structural, dielectric, and electrical studies of Sm-doped Sr0.95Ba0.05Bi2Nb2O9 lead-free relaxor ceramics","authors":"Mohamed Afqir, Didier Fasquelle, Amina Tachafine, Yingzhi Meng, Mohamed Elaatmani, Abdelhamid Oufakir, Mohamed Daoud","doi":"10.1007/s10832-024-00361-1","DOIUrl":null,"url":null,"abstract":"<div><p>Raw materials were etched by nitric acid to release utterly carbon dioxide. An excess of citric acid was then employed as fuel to prime the combustion reaction for the synthesis of Sr<sub>0.95</sub>Ba<sub>0.05</sub>Bi<sub>2−x</sub>Sm<sub>x</sub>Nb<sub>2</sub>O<sub>9</sub> (x = 0 (SrBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub>), 0.1, and 0.2) compounds. X-ray diffraction, Fourier-transformed infrared, and Raman techniques revealed quite certain that there is a link between dopant amounts and structural changes. One is that the cell volume was smoothly reduced. Second, the bond force constant decreased slightly when the dopant was introduced into the lattice. Even though the SrBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> compound is not only doped by samarium but also by barium, samarium is the only dopant that affects dielectric and electrical properties. Doping with samarium enhances the dielectric constant at room temperature by reducing the Curie temperature, and it turns ferroelectric normal into relaxor behavior. The results of AC conductivity and electrical modulus laid out that one extreme defect was that a significant amount of cation exchange occurs in Sr<sub>0.95</sub>Ba<sub>0.05</sub>Bi<sub>2−x</sub>Sm<sub>x</sub>Nb<sub>2</sub>O<sub>9</sub> samples and a large amount of oxygen vacancies were released. Overlapping large polaron tunneling model (OLPT) mechanisms was the adequate model for these compounds.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"52 4","pages":"326 - 337"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-024-00361-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Raw materials were etched by nitric acid to release utterly carbon dioxide. An excess of citric acid was then employed as fuel to prime the combustion reaction for the synthesis of Sr0.95Ba0.05Bi2−xSmxNb2O9 (x = 0 (SrBi2Nb2O9), 0.1, and 0.2) compounds. X-ray diffraction, Fourier-transformed infrared, and Raman techniques revealed quite certain that there is a link between dopant amounts and structural changes. One is that the cell volume was smoothly reduced. Second, the bond force constant decreased slightly when the dopant was introduced into the lattice. Even though the SrBi2Nb2O9 compound is not only doped by samarium but also by barium, samarium is the only dopant that affects dielectric and electrical properties. Doping with samarium enhances the dielectric constant at room temperature by reducing the Curie temperature, and it turns ferroelectric normal into relaxor behavior. The results of AC conductivity and electrical modulus laid out that one extreme defect was that a significant amount of cation exchange occurs in Sr0.95Ba0.05Bi2−xSmxNb2O9 samples and a large amount of oxygen vacancies were released. Overlapping large polaron tunneling model (OLPT) mechanisms was the adequate model for these compounds.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.