Structural, dielectric, and electrical studies of Sm-doped Sr0.95Ba0.05Bi2Nb2O9 lead-free relaxor ceramics

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Mohamed Afqir, Didier Fasquelle, Amina Tachafine, Yingzhi Meng, Mohamed Elaatmani, Abdelhamid Oufakir, Mohamed Daoud
{"title":"Structural, dielectric, and electrical studies of Sm-doped Sr0.95Ba0.05Bi2Nb2O9 lead-free relaxor ceramics","authors":"Mohamed Afqir,&nbsp;Didier Fasquelle,&nbsp;Amina Tachafine,&nbsp;Yingzhi Meng,&nbsp;Mohamed Elaatmani,&nbsp;Abdelhamid Oufakir,&nbsp;Mohamed Daoud","doi":"10.1007/s10832-024-00361-1","DOIUrl":null,"url":null,"abstract":"<div><p>Raw materials were etched by nitric acid to release utterly carbon dioxide. An excess of citric acid was then employed as fuel to prime the combustion reaction for the synthesis of Sr<sub>0.95</sub>Ba<sub>0.05</sub>Bi<sub>2−x</sub>Sm<sub>x</sub>Nb<sub>2</sub>O<sub>9</sub> (x = 0 (SrBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub>), 0.1, and 0.2) compounds. X-ray diffraction, Fourier-transformed infrared, and Raman techniques revealed quite certain that there is a link between dopant amounts and structural changes. One is that the cell volume was smoothly reduced. Second, the bond force constant decreased slightly when the dopant was introduced into the lattice. Even though the SrBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> compound is not only doped by samarium but also by barium, samarium is the only dopant that affects dielectric and electrical properties. Doping with samarium enhances the dielectric constant at room temperature by reducing the Curie temperature, and it turns ferroelectric normal into relaxor behavior. The results of AC conductivity and electrical modulus laid out that one extreme defect was that a significant amount of cation exchange occurs in Sr<sub>0.95</sub>Ba<sub>0.05</sub>Bi<sub>2−x</sub>Sm<sub>x</sub>Nb<sub>2</sub>O<sub>9</sub> samples and a large amount of oxygen vacancies were released. Overlapping large polaron tunneling model (OLPT) mechanisms was the adequate model for these compounds.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"52 4","pages":"326 - 337"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-024-00361-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Raw materials were etched by nitric acid to release utterly carbon dioxide. An excess of citric acid was then employed as fuel to prime the combustion reaction for the synthesis of Sr0.95Ba0.05Bi2−xSmxNb2O9 (x = 0 (SrBi2Nb2O9), 0.1, and 0.2) compounds. X-ray diffraction, Fourier-transformed infrared, and Raman techniques revealed quite certain that there is a link between dopant amounts and structural changes. One is that the cell volume was smoothly reduced. Second, the bond force constant decreased slightly when the dopant was introduced into the lattice. Even though the SrBi2Nb2O9 compound is not only doped by samarium but also by barium, samarium is the only dopant that affects dielectric and electrical properties. Doping with samarium enhances the dielectric constant at room temperature by reducing the Curie temperature, and it turns ferroelectric normal into relaxor behavior. The results of AC conductivity and electrical modulus laid out that one extreme defect was that a significant amount of cation exchange occurs in Sr0.95Ba0.05Bi2−xSmxNb2O9 samples and a large amount of oxygen vacancies were released. Overlapping large polaron tunneling model (OLPT) mechanisms was the adequate model for these compounds.

sm掺杂Sr0.95Ba0.05Bi2Nb2O9无铅弛豫陶瓷的结构、介电和电学研究
原料被硝酸腐蚀,完全释放二氧化碳。然后用过量的柠檬酸作为燃料,引发燃烧反应,合成Sr0.95Ba0.05Bi2−xSmxNb2O9 (x = 0 (SrBi2Nb2O9), 0.1和0.2)化合物。x射线衍射、傅里叶变换红外和拉曼技术相当肯定地揭示了掺杂量和结构变化之间的联系。一是细胞体积平滑地减小。其次,在晶格中引入掺杂剂后,结合力常数略有下降。尽管SrBi2Nb2O9化合物不仅掺杂了钐,而且还掺杂了钡,但钐是唯一影响介电性能和电学性能的掺杂剂。钐的掺入降低了居里温度,提高了室温下的介电常数,使铁电态变为弛豫态。交流电导率和电模量的结果表明,Sr0.95Ba0.05Bi2 - xSmxNb2O9样品的一个极端缺陷是发生了大量的阳离子交换,并释放了大量的氧空位。重叠大极化子隧道模型(OLPT)机制是这些化合物的合适模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信