Anil Prasad, Linu Malakkal, Lukas Bichler, Jerzy Szpunar
{"title":"Spark plasma sintering of cerium (IV) oxide under a carbon dioxide atmosphere","authors":"Anil Prasad, Linu Malakkal, Lukas Bichler, Jerzy Szpunar","doi":"10.1007/s10832-024-00363-z","DOIUrl":null,"url":null,"abstract":"<div><p>Cerium dioxide (CeO<sub>2</sub>) finds extensive utility in electro ceramics applications, including solid oxide fuel cells, oxygen sensors, and catalysts. However, Spark Plasma Sintering (SPS) of CeO<sub>2</sub> presents challenges due to the increased mobility of O<sup>2−</sup> ions in the presence of an electric field, as well as its reactivity with graphite tooling. Traditionally, CeO<sub>2</sub> is sintered in an oxidative environment to prevent it from reducing to CeO<sub>2−δ</sub> or Ce<sub>2</sub>O<sub>3</sub>. Nevertheless, oxidative atmospheres are detrimental to the graphite and steel tooling used in SPS processing. In this study, we investigated CeO<sub>2</sub> SPS in a CO<sub>2</sub> atmosphere and observed slight increase in the relative density (RD) of the as-sintered samples in comparison to those sintered in an Ar atmosphere. The improved densification is attributed to reduced formation of oxygen vacancies in the CO<sub>2</sub> atmosphere. Furthermore, the reaction between CeO<sub>2</sub> and graphite generates CO<sub>x</sub> gases, and that reaction can be reversed in a CO<sub>2</sub> atmosphere. In summary, CeO<sub>2</sub> SPS in a CO<sub>2</sub> environment demonstrates superior densification, effectively mitigating the challenges associated with ionic mobility and graphite reactivity.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"52 4","pages":"273 - 282"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-024-00363-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cerium dioxide (CeO2) finds extensive utility in electro ceramics applications, including solid oxide fuel cells, oxygen sensors, and catalysts. However, Spark Plasma Sintering (SPS) of CeO2 presents challenges due to the increased mobility of O2− ions in the presence of an electric field, as well as its reactivity with graphite tooling. Traditionally, CeO2 is sintered in an oxidative environment to prevent it from reducing to CeO2−δ or Ce2O3. Nevertheless, oxidative atmospheres are detrimental to the graphite and steel tooling used in SPS processing. In this study, we investigated CeO2 SPS in a CO2 atmosphere and observed slight increase in the relative density (RD) of the as-sintered samples in comparison to those sintered in an Ar atmosphere. The improved densification is attributed to reduced formation of oxygen vacancies in the CO2 atmosphere. Furthermore, the reaction between CeO2 and graphite generates COx gases, and that reaction can be reversed in a CO2 atmosphere. In summary, CeO2 SPS in a CO2 environment demonstrates superior densification, effectively mitigating the challenges associated with ionic mobility and graphite reactivity.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.