Hierarchical loop closure detection with weighted local patch features and global descriptors

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingrong Ren, Xiurui Zhang, Bin Liu, Yuehui Zhu
{"title":"Hierarchical loop closure detection with weighted local patch features and global descriptors","authors":"Mingrong Ren,&nbsp;Xiurui Zhang,&nbsp;Bin Liu,&nbsp;Yuehui Zhu","doi":"10.1007/s10489-024-06135-0","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining high-precision localization and ensuring map consistency are crucial objectives for mobile robots. However, loop closure detection remains a challenging aspect of their operation because of viewpoint and appearance changes. To address this issue, this paper proposes WP-VLAD, a novel hierarchical loop closure detection method that tightly couples global features and weighted local patch-level features (WPs). WP-VLAD employs MobileNetV3 as the backbone network for feature extraction, and integrates a trainable vector of local aggregated descriptors (VLAD) for compact global and local feature representation. A hierarchical navigable small world method is used to retrieve loop candidate frames based on the global features, whereas a multiscale feature fusion weighted map prediction module assigns weights to the local patches during mutual nearest neighbour matching. The proposed weight allocation strategy emphasizes salient regions, reducing interference from dynamic objects. The experimental results on benchmark datasets demonstrate that WP-VLAD significantly improves matching performance while maintaining efficient computation, exhibiting strong generalizability and robustness across various complex environments.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06135-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining high-precision localization and ensuring map consistency are crucial objectives for mobile robots. However, loop closure detection remains a challenging aspect of their operation because of viewpoint and appearance changes. To address this issue, this paper proposes WP-VLAD, a novel hierarchical loop closure detection method that tightly couples global features and weighted local patch-level features (WPs). WP-VLAD employs MobileNetV3 as the backbone network for feature extraction, and integrates a trainable vector of local aggregated descriptors (VLAD) for compact global and local feature representation. A hierarchical navigable small world method is used to retrieve loop candidate frames based on the global features, whereas a multiscale feature fusion weighted map prediction module assigns weights to the local patches during mutual nearest neighbour matching. The proposed weight allocation strategy emphasizes salient regions, reducing interference from dynamic objects. The experimental results on benchmark datasets demonstrate that WP-VLAD significantly improves matching performance while maintaining efficient computation, exhibiting strong generalizability and robustness across various complex environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信