IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion (IVIM) analysis for functional fetal lung maturity assessment from diffusion-weighted MRI data

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Noga Kertes, Yael Zaffrani-Reznikov, Onur Afacan, Sila Kurugol, Simon K. Warfield, Moti Freiman
{"title":"IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion (IVIM) analysis for functional fetal lung maturity assessment from diffusion-weighted MRI data","authors":"Noga Kertes, Yael Zaffrani-Reznikov, Onur Afacan, Sila Kurugol, Simon K. Warfield, Moti Freiman","doi":"10.1016/j.media.2024.103445","DOIUrl":null,"url":null,"abstract":"Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model. IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting sub-network, enabling simultaneous estimation of IVIM model parameters and motion. To promote physically plausible image registration, we introduce a biophysically informed loss function that effectively balances registration and model-fitting quality. We validated the efficacy of IVIM-morph by establishing a correlation between the predicted IVIM model parameters of the lung and gestational age (GA) using fetal DWI data of 39 subjects. Our approach was compared against six baseline methods: (1) no motion compensation, (2) affine registration of all DWI images to the initial image, (3) deformable registration of all DWI images to the initial image, (4) deformable registration of each DWI image to its preceding image in the sequence, (5) iterative deformable motion compensation combined with IVIM model parameter estimation, and (6) self-supervised deep-learning-based deformable registration. IVIM-morph exhibited a notably improved correlation with gestational age (GA) when performing in-vivo quantitative analysis of fetal lung DWI data during the canalicular phase. Specifically, over 2 test groups of cases, it achieved an <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msubsup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msubsup></mml:math> of 0.44 and 0.52, outperforming the values of 0.27 and 0.25, 0.25 and 0.00, 0.00 and 0.00, 0.38 and 0.00, and 0.07 and 0.14 obtained by other methods. IVIM-morph shows potential in developing valuable biomarkers for non-invasive assessment of fetal lung maturity with DWI data. Moreover, its adaptability opens the door to potential applications in other clinical contexts where motion compensation is essential for quantitative DWI analysis. The IVIM-morph code is readily available at: <ce:inter-ref xlink:href=\"https://github.com/TechnionComputationalMRILab/qDWI-Morph\" xlink:type=\"simple\">https://github.com/TechnionComputationalMRILab/qDWI-Morph</ce:inter-ref>.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"398 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103445","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model. IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting sub-network, enabling simultaneous estimation of IVIM model parameters and motion. To promote physically plausible image registration, we introduce a biophysically informed loss function that effectively balances registration and model-fitting quality. We validated the efficacy of IVIM-morph by establishing a correlation between the predicted IVIM model parameters of the lung and gestational age (GA) using fetal DWI data of 39 subjects. Our approach was compared against six baseline methods: (1) no motion compensation, (2) affine registration of all DWI images to the initial image, (3) deformable registration of all DWI images to the initial image, (4) deformable registration of each DWI image to its preceding image in the sequence, (5) iterative deformable motion compensation combined with IVIM model parameter estimation, and (6) self-supervised deep-learning-based deformable registration. IVIM-morph exhibited a notably improved correlation with gestational age (GA) when performing in-vivo quantitative analysis of fetal lung DWI data during the canalicular phase. Specifically, over 2 test groups of cases, it achieved an Rf2 of 0.44 and 0.52, outperforming the values of 0.27 and 0.25, 0.25 and 0.00, 0.00 and 0.00, 0.38 and 0.00, and 0.07 and 0.14 obtained by other methods. IVIM-morph shows potential in developing valuable biomarkers for non-invasive assessment of fetal lung maturity with DWI data. Moreover, its adaptability opens the door to potential applications in other clinical contexts where motion compensation is essential for quantitative DWI analysis. The IVIM-morph code is readily available at: https://github.com/TechnionComputationalMRILab/qDWI-Morph.
IVIM- morph:运动补偿定量体素内非相干运动(IVIM)分析功能胎儿肺成熟度评估从扩散加权MRI数据
定量分析弥散加权磁共振成像(DWI)数据中的伪扩散显示了评估胎儿肺成熟和产生有价值的成像生物标志物的潜力。然而,DWI数据的临床应用受到采集过程中不可避免的胎儿运动的阻碍。我们提出了IVIM-morph,这是一种自监督深度神经网络模型,用于使用体素内非相干运动(IVIM)模型对DWI数据进行运动校正定量分析。IVIM-morph结合了两个子网络,一个配准子网络和一个IVIM模型拟合子网络,可以同时估计IVIM模型参数和运动。为了促进物理上可信的图像配准,我们引入了生物物理信息损失函数,有效地平衡配准和模型拟合质量。我们利用39例受试者的胎儿DWI数据,通过建立预测肺部IVIM模型参数与胎龄(GA)之间的相关性,验证了IVIM-morph的有效性。我们的方法与六种基线方法进行了比较:(1)无运动补偿,(2)所有DWI图像与初始图像的仿射配准,(3)所有DWI图像与初始图像的可变形配准,(4)序列中每个DWI图像与前一张图像的可变形配准,(5)结合IVIM模型参数估计的迭代可变形运动补偿,以及(6)基于自监督深度学习的可变形配准。当对小管期胎儿肺DWI数据进行体内定量分析时,IVIM-morph与胎龄(GA)的相关性显著提高。其中,在2组病例中,Rf2分别为0.44和0.52,优于其他方法得到的0.27和0.25、0.25和0.00、0.00和0.00、0.38和0.00、0.07和0.14。IVIM-morph在利用DWI数据无创评估胎儿肺成熟度方面显示出开发有价值的生物标志物的潜力。此外,它的适应性为其他临床环境中的潜在应用打开了大门,其中运动补偿对定量DWI分析至关重要。IVIM-morph代码可以在https://github.com/TechnionComputationalMRILab/qDWI-Morph上随时获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信