Enhancing the coupling coordination of soil–crop systems by optimising soil properties and crop production via subsoiling

Jingyi Shao, Ling Liu, Jichao Cui, Hong Yang, Yecheng Zhang, Ruxin Li, Yi Lv, Yifei Ma, Qin Fang, Shengkai Sun, Siyu Chen, Huifang Han
{"title":"Enhancing the coupling coordination of soil–crop systems by optimising soil properties and crop production via subsoiling","authors":"Jingyi Shao, Ling Liu, Jichao Cui, Hong Yang, Yecheng Zhang, Ruxin Li, Yi Lv, Yifei Ma, Qin Fang, Shengkai Sun, Siyu Chen, Huifang Han","doi":"10.1016/j.still.2024.106438","DOIUrl":null,"url":null,"abstract":"Subsoiling is a well-known practice for improving soil structure, increasing soil nutrient content and enhancing crop growth. However, studies applying the coupling coordination analysis (CCA) model to reflect the coupling coordination between soil properties and crop production via subsoiling are still scarce. This study used the CCA to analyse the coupling coordination between soil properties and yield based on a long-term tillage positioning experiment. Tillage treatments included subsoiling (SS35 and SS40—subsoiling shovel) and rotary tillage (RT15—harrow blade, control). Soil pore structure was analysed using X-ray computed tomography and mercury injection tests. Results showed that SS35 and SS40 increased the macropore area by 82.0 %–130.7 % and the cumulative pore volume by 47.8 %–62.1 % in the 20–40 cm soil layer compared to RT15. This led to a 1.3 %–1.8 % increase in soil macro-aggregates, 9.0 %–14.5 % increase in mean weight diameter and 6.9 %–12.1 % increase in geometric mean diameter in case of SS35 and SS40 compared to RT15. These results indicated that subsoiling significantly enhanced the pore characteristics and aggregate stability in the 20–40 cm soil layer. The impact of SS40 on soil pore properties and aggregate stability surpassed that of SS35. As a result, SS35 and SS40 significantly increased carbon sequestration by 2.4 %–14.5 % and maize yield by 8.9 %–11.9 % compared to RT15. The CCA model analysis showed that SS35 and SS40 increased the coupling coordination (D) between soil properties and crop production compared to RT15, especially in the 30–40 cm soil layer. The D value was 0.617–0.899 for SS35 and 0.631–0.817 for SS40. This study provides new insights into quantifying the role of tillage for multi-indicators in the soil–crop system. The findings will guide policymakers in formulating for more sustainable tillage to improve crop production and ensure carbon mitigation.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2024.106438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subsoiling is a well-known practice for improving soil structure, increasing soil nutrient content and enhancing crop growth. However, studies applying the coupling coordination analysis (CCA) model to reflect the coupling coordination between soil properties and crop production via subsoiling are still scarce. This study used the CCA to analyse the coupling coordination between soil properties and yield based on a long-term tillage positioning experiment. Tillage treatments included subsoiling (SS35 and SS40—subsoiling shovel) and rotary tillage (RT15—harrow blade, control). Soil pore structure was analysed using X-ray computed tomography and mercury injection tests. Results showed that SS35 and SS40 increased the macropore area by 82.0 %–130.7 % and the cumulative pore volume by 47.8 %–62.1 % in the 20–40 cm soil layer compared to RT15. This led to a 1.3 %–1.8 % increase in soil macro-aggregates, 9.0 %–14.5 % increase in mean weight diameter and 6.9 %–12.1 % increase in geometric mean diameter in case of SS35 and SS40 compared to RT15. These results indicated that subsoiling significantly enhanced the pore characteristics and aggregate stability in the 20–40 cm soil layer. The impact of SS40 on soil pore properties and aggregate stability surpassed that of SS35. As a result, SS35 and SS40 significantly increased carbon sequestration by 2.4 %–14.5 % and maize yield by 8.9 %–11.9 % compared to RT15. The CCA model analysis showed that SS35 and SS40 increased the coupling coordination (D) between soil properties and crop production compared to RT15, especially in the 30–40 cm soil layer. The D value was 0.617–0.899 for SS35 and 0.631–0.817 for SS40. This study provides new insights into quantifying the role of tillage for multi-indicators in the soil–crop system. The findings will guide policymakers in formulating for more sustainable tillage to improve crop production and ensure carbon mitigation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信