Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH2+

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
João Gabriel Farias Romeu, Fernando R. Ornellas
{"title":"Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH2+","authors":"João Gabriel Farias Romeu, Fernando R. Ornellas","doi":"10.1002/jcc.27530","DOIUrl":null,"url":null,"abstract":"Seventeen electronic states of the dication VH<sup>2+</sup> were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V<sup>2+</sup> + H channel are thermodynamic stable. For states dissociating into the channel V<sup>+</sup> + H<sup>+</sup>, avoided crossings at large distances give rise to thermodynamic metastability but do not affect the characterization of the bound region. Configuration state functions with the 3σ orbital /doubly occupied give rise to covalent contributions to the bonding; the major contribution, however, comes from the electrostatic charge-induced dipole interaction. This explains the shape and proximity of the potential energy curves beyond their equilibrium distances. Dipole moment functions and vibrationally averaged dipole moments quantify the polarity of the molecule. Spin–orbit couplings give rise to complex and dense regions of very close-lying Ω states.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.27530","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Seventeen electronic states of the dication VH2+ were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V2+ + H channel are thermodynamic stable. For states dissociating into the channel V+ + H+, avoided crossings at large distances give rise to thermodynamic metastability but do not affect the characterization of the bound region. Configuration state functions with the 3σ orbital /doubly occupied give rise to covalent contributions to the bonding; the major contribution, however, comes from the electrostatic charge-induced dipole interaction. This explains the shape and proximity of the potential energy curves beyond their equilibrium distances. Dipole moment functions and vibrationally averaged dipole moments quantify the polarity of the molecule. Spin–orbit couplings give rise to complex and dense regions of very close-lying Ω states.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信